Giải phương trình với a là hằng số \(\frac{1+a}{1-x}=1-a\)
Giải bất phương trình với a,b là các hằng số( a khác 0).
\(\frac{ax-b}{a}+(a+b+1)x>\frac{2b}{a}\)
\(\frac{ax-b}{a}+(a+b+1)x>\frac{2b}{a}\)
<=> \(x-\frac{b}{a}+\left(a+b+1\right)x>\frac{2b}{a}\)
<=> \(\left(a+b+2\right)x>\frac{3b}{a}\)
Giờ biện luận theo a và b thôi
Giải phương trình: \(\frac{1+a}{1-x}=1-a\) (a là hằng số)
giải phương trình : \(\frac{1}{\left(x+a\right)^2-1}+\frac{1}{\left(x+1\right)^2-a^2}=\frac{1}{x^2-\left(a+1\right)^2}+\frac{1}{x^2-\left(a-1\right)^2}\)( a là hằng số)
Giải bất phương trình sau với a là hằng số:
\(\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{4x-1}{2a^2-2a+2}+\frac{a-2ax}{1+a^3}\)
Trước hết xoá \(\frac{2x}{a^2-a+1}\)ở 2 vế. Nếu \(\frac{a}{a+1}>0\left(a< -1;a>0\right)\)thì \(x< \frac{a}{4}\). Nếu \(\frac{a}{a+1}< 0\left(-1< a< 0\right)\)thì \(x>\frac{a}{4}\)
\(ĐKXĐ:a\ne-1\)
\(\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{4x-1}{2a^2-2a+2}+\frac{a-2ax}{1+a^3}\Leftrightarrow\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{2x}{a^2-a+1}-\frac{1}{2a^2-2a+2}+\frac{a}{1+a^3}-\frac{2ax}{1+a^3}\)\(\Leftrightarrow\frac{1}{2a+2}-\frac{1}{2a^2-2a+2}+\frac{a}{1+a^3}>\frac{2ax}{1+a^3}\Leftrightarrow\frac{a^2-a+1-a-1+2a}{2\left(a^3+1\right)}>\frac{2ax}{1+a^3}\Leftrightarrow\frac{a^2}{2\left(1+a^3\right)}>\frac{4ax}{2\left(1+a^3\right)}\)\(\Leftrightarrow\frac{4ax}{a+1}< \frac{a^2}{a+1}\)
* Nếu \(\frac{a}{a+1}>0\)(tức là a < -1 hoặc a > 0) thì \(x< \frac{a}{4}\)
* Nếu \(\frac{a}{a+1}< 0\)(tức là -1 < a < 0) thì \(x>\frac{a}{4}\)
?????????????????????????
giải bất phương trình : \(\frac{2x}{a^2-a+1}-\frac{1}{2a+a}< \frac{4x-1}{2a^2-2a+2}+\frac{a-2ax}{1+a^3}\)(a là hằng số)
Giải phương trình (x là ẩn số ; a,b,c là hằng số và đôi một khác nhau)
1/(a+b-x) = 1/a +1/b + 1/x
Giúp mình với
Bài 1: Tìm m để 2 phương trình có nghiệm tương đương vơi nhau
2x+3 = 0 và (2x +3)(mx-1) = 0
Bài 2: Giải và biện luận phương trình (m là hằng số)
\(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)1)
Bài 3: Tìm các giá trị của hằng số a để phương trình vô nghiệm
\(\frac{a\left(3x-1\right)}{5}-\frac{6x-17}{4}+\frac{3x+2}{10}=0\)
Bài 4: Giải và biện luận phương trình (m là hằng số)
a) \(\frac{mx+5}{10}+\frac{x+m}{4}=\frac{m}{20}\)
b) \(\frac{x-4m}{m+1}+\frac{x-4}{m-1}=\frac{x-4m-3}{m^2-1}\)
HELP!!!!!!!!!!!!!!!!!!! >^<
Giải phương trình: a/x+a=(a-1/x-1)+(1/x+1) ( a là hằng)
Cho phương trình ( ẩn x, a là tham số)
\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3a+1\right)}{a^2-x^2}\)
a) Giải phương trình với a=-3
b) Giải phương trình khi a=1
c) Tìm các giá trị của a để phương trình nhận x=\(\frac{1}{2}\) là nghiệm
a) ĐKXĐ : \(x\ne\pm a\).
Với \(a=-3\) khi đó ta có pt :
\(A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left(-9+1\right)}{\left(-3\right)^2-x^2}\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(-3-x\right)}{\left(-3-x\right)\left(-3+x\right)}+\frac{24}{\left(-3-x\right)\left(-3+x\right)}=0\)
\(\Rightarrow x^2-9-\left(-3x-x^2-9-3x\right)+24=0\)
\(\Leftrightarrow2x^2+6x+24=0\)
\(\Leftrightarrow x^2+3x+12=0\) ( vô nghiệm )
Phần b) tương tự.
\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3x+1\right)}{a^2-x^2}\)
\(=\frac{x+a}{a-x}+\frac{x-a}{a+x}=\frac{a\left(3+1\right)}{\left(a-x\right)\left(a+x\right)}\)
\(=\frac{\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+1\right)}=\frac{a\left(3a+1\right)}{\left(a+x\right)\left(a-x\right)}\)
\(\Leftrightarrow\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)=a\left(3a+1\right)\)
\(\Leftrightarrow x^2+2ax+a^2-ax-x^2-a^2+ax=3a^2+a\)
\(\Leftrightarrow2ax=3a^2+a\)
\(\Leftrightarrow x=\frac{3a^2+a}{2a}\left(a\ne0\right)\)
a) Khi x=-3 => \(x=\frac{3\cdot\left(-3\right)^2-3}{2\left(-3\right)}=-13\)
b) a=1
\(\Leftrightarrow x=\frac{3\cdot1^2+1}{2\cdot1}=2\)
tìm tham số a cho phương trình - 4x - 3 = 4x - 7 nhận x = 2 là nghiệm