Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thái Anh
Xem chi tiết
Đinh Thanh Nhàn
14 tháng 3 2016 lúc 22:49

x/(x+y+z)>x/(x+y+z+t)

tương tự cho 3 cái còn lại

=>M>x/(x+y+z+t)+y/(x+y+z+t)+z/(x+y+z+t)+t/(x+y+z+t)

=>m>(x+y+z+t)/(x+y+z+t)

=>M>1

Đinh Thanh Nhàn
14 tháng 3 2016 lúc 23:01

x/(x+y+z)<1=>(x+t)/(x+y+t+z)>x/(x+y+z)

tương tự => M<2(x+y+z+t)/(x+y+z+t)

=> M<2

ta có 2>M>1=> m ko phải là số tự nhiên

Đỗ Trung Kiên
18 tháng 3 2017 lúc 19:45

tại sao x/(x+y+z)<1 thì bạn có thể suy ra (x+t)/(x+y+t+z)>x/(x+y+z)

mình thấy (x+t)/(x+y+z+t)cũng lớn hơn 1 cơ mà ( thấy vô lý kiểu gì ý)

Đặng Bích Thục
Xem chi tiết
09 -Trần Tấn Đạt 7A4
Xem chi tiết
_png.vna_
Xem chi tiết
Akai Haruma
6 tháng 1 lúc 18:22

Lời giải:

Với $x,y,z,t$ là số tự nhiên khác 0 thì:

$\frac{x}{x+y+z}> \frac{x}{x+y+z+t}$

$\frac{y}{x+y+t}> \frac{y}{x+y+z+t}$

$\frac{z}{y+z+t}> \frac{z}{x+y+z+t}$

$\frac{t}{x+z+t}> \frac{t}{x+y+z+t}$

$\Rightarrow M> \frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1$
$\Rightarrow M>1(*)$

Mặt khác:

Có: $\frac{x}{x+y+z}-\frac{x+t}{x+y+z+t}=\frac{-yt-tz}{(x+y+z)(x+y+z+t)}<0$

$\Rightarrow \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}$

Tương tự:

$\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}$

$\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}$

$\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}$

Cộng lại ta được: $M< \frac{(x+t)+(y+z)+(z+x)+(t+t)}{x+y+z+t}=2(**)$

Từ $(*); (**)\Rightarrow 1< M < 2$ nên $M$ không là số tự nhiên.

Bui Thi Thu Phuong
Xem chi tiết
Ngô Văn Dũng
Xem chi tiết
đường hà linh
29 tháng 1 2021 lúc 14:54

1<M<2

Khách vãng lai đã xóa
Cù Thúy Hiền
Xem chi tiết
Đinh Đức Hùng
16 tháng 3 2017 lúc 12:11

\(x;y;z;t\in N\)nên ta có :

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)

\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)

\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)

Cộng vế với vế ta được :

\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(\Rightarrow1< M< 2\)

=> M có giá trị không phải là số tự nhiên

Phan Thanh Tịnh
16 tháng 3 2017 lúc 7:03

Với\(x,y,z,t\in\)N*,ta có :\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)

\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y}{x+y}\left(2\right);\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)

\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\left(4\right)\)

Cộng (1),(2),(3),(4),vế theo vế,ta có :\(\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)hay 1 < M < 2 

Vậy M không phải là số tự nhiên

Le Phuc Thuan
16 tháng 3 2017 lúc 17:12

Đinh Đức Hùng giải SAI nha 

như bạn Phan Thanh Tịnh mới đúng

Nguyễn Thành Long
Xem chi tiết
Nguyễn Thành Long
Xem chi tiết