chứng minh đa thức p(x)=x^8-x^5+x^2-x+1 không có nhiệm
chứng minh đa thức sau không có nhiệm: K(x)=(x+2)^2+4x^2+5
chứng minh đa thức sau không có nghiệm:K(x)=(x+2)^2+4x^2+5
chứng minh đa thức P(x)=x^8-x^5+x^2-x+1 không có nghiệm'
Xét \(x\le0\): Ta có \(x^8\ge0;-x^5\ge0;x^2\ge0;-x\ge0\)nên
\(P\left(x\right)=x^8-x^5+x^2-x+1\ge1>0.\)
Xét \(0< x< 1:x^8>0;x^2>0;1-x^3>0;1-x>0\)nên
\(P\left(x\right)=x^8+x^2\left(1-x^3\right)+\left(1-x\right)>0.\)
Xét \(x\ge1:x^5>0;x^3-1\ge0;x>0;x-1\ge0\)nên
\(P\left(x\right)=x^5\left(x^3-1\right)+x\left(x-1\right)+1>0.\)
Vậy với mọi giá trị của x, ta luôn có P(x) > 0
Do đó, đa thức \(P\left(x\right)=x^8-x^5+x^2-x+1\)không có nghiệm.
a) P(x)= 2(x-3)^2+5
b) Q(x)= x^4+x^2+2
Chứng minh rằng đa thưc này không có nhiệm
cho đa thức: P(x)= x^4 + 3x^2 + 3
a) Tính P(1), P(-1).
b) Chứng tỏ rằng đa thức trên không có nhiệm.
a)\(P\left(1\right)=1^4+3.1^2+3\)
\(=1+3+3=7\)
\(P\left(-1\right)=\left(-1\right)^4+3\left(-1\right)^2+3\)
\(=1+3+3=7\)
b)Vì \(x^4\ge0\)với mọi x
\(x^2\ge0\)với mọi x
=>\(3x^2\ge0\)với mọi x
=>\(x^4+3x^2\ge0\)với mọi giá trị của x
=>\(x^4+3x^2+3\ge3\)với mọi giá trị của x
=>\(x^4+3x^2+3>0\)=>P>0
=> Đa thức P không có nhiệm
a) Tìm nghiệm đa thức A(x) = 3x - 1
b) Chứng minh rằng đa thức B(x) = x^5 + x + 1 không có nghiệm
a) Cho \(A\left(x\right)=0\)
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(\frac{1}{3}\)là nghiệm của đa thức
b) Đề sai, vì đa thức trên có nghiệm!
x^4+2x^2+1
x^8-x^5+x^2-x+1
CMR: Các đa thức sau ko có nhiệm
x^4+x^2+x^2+1
x^2(x^2+1)+(x^2+1)
(x^2+1)^2 vì x^2 chắc chắn phải lớn hơn hoặc =0
nên giá trị bé nhất của biểu thức này là 1
->ko có nhiệm
1/ Chứng minh M(x)= -x2 + 5 không có nghiệm.
2/ Tìm hệ số a của đa thức M(x)= a x2 + 5 x - 3, biết rằng đa thức này có một nghiệm là \(\dfrac{1}{2}\)
a/ \(M\left(x\right)=-x^2+5\)
Có \(-x^2\le0\forall x\)
=> \(M\left(x\right)\le5\forall x\)
=> M(x) không có nghiệm.
2/
Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có
\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)
\(\Leftrightarrow a=2\)
Vậy...
1. Cho đa thức H(x)=ax2 - x + 1 . Tìm a biết H(x) có một nghiệm bằng 2 ...
2. Chứng minh f(x)=x4 + 101 không có nghiệm
3. -1; 3 có là nghiệm của đa thức g(x)= -2-7x+8 ko ?
1/ Ta có H (x) có một nghiệm bằng 2
=> H (2) = 0
=> \(4a-2+1=0\)
=> \(4a-\left(2-1\right)=0\)
=> \(4a-1=0\)
=> \(4a=1\)
=> \(a=\frac{1}{4}\)
Vậy khi \(a=\frac{1}{4}\)thì H (x) có một nghiệm bằng 2.
2/
Ta có \(x^4\ge0\)với mọi giá trị của x
=> \(x^4+101>0\)với mọi giá trị của x
=> f (x) không có nghiệm (đpcm)
3/
Ta có \(g\left(1\right)=-2-7.1+8=-2-7+8=-9+8=-1\ne0\)
=> 1 không phải là nghiệm của đa thức g (x)
và \(g\left(3\right)=-2-7.3+8=-2-21+8=-23+8=-15\ne0\)
=> 3 không phải là nghiệm của đa thức g (x)
2. Chứng minh f(x)=x4 + 101 không có nghiệm
Ta có:x4+101=0
=>x4=-101
=>phương trình vô nghiệm vì x4\(\ge\)0 mà -101<0
Cho đa thức P(x)=2(x-3)^2+5. Chứng minh rằng đa thức đã cho không có nghiệm
có: 2(x-3)^2 >hoặc = 0 với mọi x
suy ra: 2(x-3)^2+5 >hoặc = 5 với mọi x
suy ra: P(x) > 0 với mọi x
suy ra: đa thức không có nghiệm (đpcm)
giả sử
=> P(x)=2(x-3)^2+5=0
=> 2(x-3)^2=-5
=> (x-3)^2=-2.5
vì (x-3)^2 lớn hơn hoặc bằng 0 nên x ko tồn tại
=> đa thức trên vô nghiệm
giả sử
=> P(x)= 2(x-3)^2+5=0
=> 2(x3)^2 = -5
Vì (x-3)^2 lướn hơn ..........
=> đa thức trên vô nhiệm