Tìm số tự nhiên abcdeg biết:
abcdeg x 3 = bcdega
gabcde : 5 = abcdeg
tìm số có 6 chữ số abcdeg biết số đó đồng thời thỏa mãn 2 điều kiện
bcdega = abcdeg x 3
gabcde = abcdeg x 5
giải giúp em với ạ
Từ đề bài abcdeg là số có 6 chữ số \(\Rightarrow a\ne0\)
abcdegx5=gabcde là số có 6 chữ số \(\Rightarrow a\le1\) \(\Rightarrow a=1\) và \(g\ge5\)
\(abcdegx5⋮5\Rightarrow gabcde⋮5\) => e = 0 hoặc e=5
+ Với e = 0
Từ gabcde = abcdegx5 => g1bcd0=1bcd0gx5 kết hợp với điều kiện \(g\ge5\) => g = 6 hoặc g=8
Từ bcdega = abcdegx3 => bcd0g1 = 1bcd0gx3 => g = 6 hoặc g=8 không thỏa mãn đk đề bài vì bcd0g1 có chữ số hàng đơn vị là 1
=> e=0 bị loại
+ Với e = 5
Từ gabcde = abcdegx5 => g1bcd5 = 1bcd5dx5 kết hợp với điều kiện \(g\ge5\) => g = 5 hoặc g = 7 hoặc g = 9
Từ bcdega = abcdegx3 => bcd5g1 = 1bcd5gx3 => g=7
Ta có
\(\dfrac{bcdega}{gabcde}=\dfrac{abcdegx3}{abcdegx5}=\dfrac{3}{5}\Rightarrow5xbcdega=3xgabcde\)
=> 5 x bcd571 = 3x71bcd5
=> 5 x (1000xbcd+571) = 3x(710005+10xbcd)
5000xbcd+2855=2130015+30xbcd
4970xbcd=2130015-2855=2127160
bcd=2127160:4970=428
=> số abcdeg = 142857
Lời giải mình thiếu một chút
trong trường howph e=5 thì g = 5 hoặc g=7 hoặc g=9
Tìm số tự nhiên abcdeg, biết rằng:2a15b:cde=90
tìm số có 6 chữ số abcdeg biết
1) bcdega= abcdeg x3
2) gabcde:5= abcdeg
Gọi m = abcdeg
Theo đầu bài ta có:
bcdega = abcdeg x 3 hay abcdeg x 3 = bcdega
Chữ số a của abcdeg phải nhỏ hơn 4 vì nếu a = 4 thì tích abcdeg x 3 sẽ có 7 chữ số.
a cũng không thể bằng 2 hay 3 vì nếu a = 2 hay a =3 thì khi thay vào 2b x 3 hoặc 3b x 3 để có tích là bc đều không phù hợp.
Vậy a = 1
Thay a = 1 vào ta có:
1bcdeg x 3 = bcdeg1
Vì g x 3 có chữ số tận cùng là 1 nên g = 7 ( để 7 x 3 = 21 )
Thay tiếp g = 7 ta có:
1bcde7 x 3 = bcde71
7 x 3 = 21, viết 1 nhớ 2.
e x 3 + 2 ( nhớ ) kết quả có chữ số tận cùng là 7.
Vậy e = 5 ( vì 5 x 3 + 2 = 17, viết 7 nhớ 1 )
Thay tiếp e = 5 ta có:
1bcd57 x 3 = bcd571
Xét phép nhân ở hàng trăm:
d x 3 + nhớ 1 được số có tận cùng là 5 nên d = 8 để 8 x 3 + 1 = 25, ( viết 5 nhớ 2 )
Thay d = 8 ta có:
1bc857 x 3 = bc8571
Vì c x 3 + nhớ 2 tận cùng là 8 nên ta có c = 2 ( 2 x 3 + 2 = 8 )
Thay c = 2 ta có:
1b2857 x 3 = b28571
Xét phép nhân ở hàng chục nghìn : b x 3 là số có tận cùng là 2 nên b = 4 ( để 4 x 3 = 12, viết 2 nhớ 1 )
Vậy:
a = 1, b =4 , c = 2 , d = 8 , e = 5 , g = 7
Số phải tìm m = abcdeg là 142857
Cho hai số tự nhiên và đều chia 11 dư 5. Chứng minh rằng số abcdeg chia hết cho 11
Vì abc và deg đều chia 11 dư 5 nên abc-deg chia hết cho 11
Ta có:
abcdeg=1000abc+deg=1001abc+(abc-deg)
1001abc chia hết cho 11
abc-deg chia hết cho 11
Vậy abcdeg chia hết cho 11
Cho 2 số tự nhiên abc và deg đều chia 11 dư 5 . CMR số abcdeg chia hết cho 11
Vì abc và deg đều chia 11 dư 5 nên abc-deg chia hết cho 11
Ta có:
abcdeg=1000abc+deg=1001abc+(abc-deg)
1001abc chia hết cho 11
abc-deg chia hết cho 11
Vậy abcdeg chia hết cho 11
Vì abc và deg đều chia 11 dư 5 nên abc-deg chia hết cho 11
Ta có:
abcdeg = 1000abc+deg =1001abc+(abc-deg)
1001abc chia hết cho 11
abc - deg chia hết cho 11
Vậy abcdeg chia hết cho 11
HT
Cho 2 số tự nhiên abc và deg đều chia 11 dư 5 . CMR số abcdeg chia hết cho 11
Vì abc và deg đều chia 11 dư 5 nên abc-deg chia hết cho 11
Ta có:
abcdeg=1000abc+deg=1001abc+(abc-deg)
1001abc chia hết cho 11
abc-deg chia hết cho 11
Vậy abcdeg chia hết cho 111
1/ Chứng minh rằng nếu ab + cd + eg chia hết cho 11 thì abcdeg chia hết cho 11
2/ Cho abc + deg chia hết cho 37. Chứng minh rằng abcdeg chia hết cho 37
3/ Cho abc - deg chia hết cho 7. Chứng minh rằng abcdeg chia hết cho 7
4/ Cho tám số tự nhiên có 3 chữ số. Chứng minh rằng trong 8 số đó tồn tại 2 số mà khi viết liên tiếp nhau thì tạo thành một số có 6 chữ số chia hết cho 7
5/ Tìm chữ số a biết rằng 20a20a20a chia hết cho 7
BIẾT ĐƯỢC BÀI NÀO THÌ GIÚP MINK GIẢI BÀI ĐÓ NHÉ!!!!!!!!!!!!!!!!! THANK YOU!!!!!!!!!!!!!!!!!!
Cho hai số tự nhiên abc và deg đều chia 11 dư 5. Chứng minh rằng số abcdeg\(⋮\)11
Đặt \(\overline{abc}=11a+5,\overline{deg}=11b+5\).
\(\overline{abcdeg}=\overline{abc}.1000+\overline{deg}=\left(11a+5\right).1000+11b+5\)
\(\equiv5005\left(mod11\right)\equiv0\left(mod11\right)\).
Do đó ta có đpcm.
có bao nhiêu số tự nhiên có 6 chữ số abcdeg mà abc<deg
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
có bao nhiêu số tự nhiên có 6 chữ số abcdeg mà abc<deg
có bao nhiêu số tự nhiên có 6 chữ số abcdeg mà abc<deg
có bao nhiêu số tự nhiên có 6 chữ số abcdeg mà abc<deg
có bao nhiêu số tự nhiên có 6 chữ số abcdeg mà abc<deg
mik botay.com.vn
Sao
Bexiulại trả lời như thế lạc đề rồi |
Trả lời câu 1 :
Số tự nhiên có sáu chữ số nằm trong [100 000 , 999 999]
Nhận xét :
+ 100 000 , 100 001 ... 100 099 , 100 100 Có 100 số có abc > deg
+ 101 000 , 101 001 ... có 101 số có abc > deg
....
+ 999 000 , 999 001 ... có 999 số có abc > deg
=> tổng số tự nhiên có 6 chữ số mà abc > deg là : Sum = ( 100+101+...+998+999 )