Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anna
Xem chi tiết
Hoàng
Xem chi tiết
Nguyễn Anh Quân
14 tháng 12 2017 lúc 20:37

3B = 1+1/3+....+1/3^2012

2B=3B-B=(1+1/3+....+1/3^2012)-(1/3+1/3^2+....+1/3^2013) = 1-1/3^2013 < 1

=> B < 1:2 = 1/2

k mk nha

tran thu thuy
Xem chi tiết
Hồ Thu Giang
Xem chi tiết
soyeon_Tiểubàng giải
1 tháng 12 2016 lúc 20:42

Xét dạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}.\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\sqrt{n}.\frac{1}{\sqrt{n}}+\sqrt{n}.\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)< \left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)=2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Thay vào đề bài ta có:

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2013\sqrt{2012}}\)

\(< 2.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(< 2.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2013}}\right)\)

\(< 2.\left(1-\frac{1}{\sqrt{2013}}\right)< 2\left(đpcm\right)\)

 

 

 

Perfect Blue
1 tháng 12 2016 lúc 22:14

Liên hợp

Bùi Hà Chi
1 tháng 12 2016 lúc 22:45

Xét dạng tổng quát :\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}.\frac{1}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)< \left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng vào bài toán:

\(\frac{1}{2\sqrt{1}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right);\frac{1}{3\sqrt{2}}< 2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right);...;\frac{1}{2013\sqrt{2012}}< 2\left(\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

=>\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}...+\frac{1}{2013\sqrt{2012}}< \)\(2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+2\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)+...+2\left(\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+2\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)+...+2\left(\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

=\(2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2013}}\right)=2-\frac{2}{\sqrt{2013}}< 2\)

Vậy \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}...+\frac{1}{2013\sqrt{2012}}< 2\)

Đỗ Đặng Thuỳ Mai
Xem chi tiết
PIKACHU
Xem chi tiết
Nguyen Thanh Long
Xem chi tiết
Nguyễn Anh Quân
10 tháng 2 2018 lúc 21:02

a, 5M = 5+1+1/5+1/5^2+.....+1/5^2011

4M=5M-M=(5+1+1/5+1/5^2+.....+1/5^2011)-(1+1/5+1/5^2+.....+1/5^2012)

               = 5-1/5^2012

=> M = (5 - 1/5^2012)/4

Tk mk nha

Nguyễn Thanh Hằng
Xem chi tiết
Socôla
Xem chi tiết