Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TRẦN NGỌC PHƯƠNG NGHI_7A...
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 11 2021 lúc 21:52

Bạn ghi lại đề đi bạn

Song tử
Xem chi tiết
vân vũ
Xem chi tiết
Sinh Viên NEU
22 tháng 10 2023 lúc 11:08

a)

Các số nguyên x thỏa mãn là:

\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)

Tổng các số nguyên trên là:

\((8-10).19:2=-19\)

b) 

Các số nguyên x thỏa mãn là:

\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)

Tổng các số trên là: 

\((10-9).20:2=10\)

c) Các số nguyên x thỏa mãn là:

\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)

Tổng các số nguyên đó là: 

\((16-15).32:2=16\)

 

huu phuc
Xem chi tiết
Nguyễn Mạnh Tuấn
21 tháng 6 2016 lúc 8:23

xy + 2x + y + 11 = 0

 =>x(y+2)+y+11=0

=>x(y+2)+(y+2)+9=0

=>(y+2)(x+1)+9=0

=>(y+2)(x+1)=0-9

=>(y+2)(x+1)=-9

Mà x;y là số nguyên

=>y+2 và x+1 là các ước của 9

Mà Ư(9)={1;-1;3;-3;9;-9}

Ta có bảng sau

x+11-13-39-9
y+29-93-31-1
x0-22-48-10
y7-111-5-1-3

(x;y) cần tìm là (0;7) ; (-2;-11) ; (2;1) ;(-4;-5) ; (8;-1) ; (-10;-3)

Nguyễn Mạnh Tuấn
21 tháng 6 2016 lúc 8:24

nhầm các kết quả là đối dấu với kết quả trên

Trần Thị Thanh Nga
27 tháng 3 2017 lúc 20:37

là ước của -9

Nguyễn Minh Thành
Xem chi tiết
Hacker lỏd
Xem chi tiết

Ta có: \(2x^2+y^2+3xy-3x-3y+11=0\)

=>\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

\(\Delta=\left(3y-3\right)^2-4\cdot2\cdot\left(y^2-3y+11\right)\)

\(=9y^2-18y+9-8y^2+24y-88=y^2+6y-79\)

\(=y^2+6y+9-88=\left(y+3\right)^2-88\)

Để phương trình có nghiệm nguyên thì Δ phải là số chính phương

=>\(\left(y+3\right)^2-88=k^2\left(k\in Z\right)\)

=>\(\left(y+3\right)^2-k^2=88\)

=>(y+3-k)(y+3+k)=88

=>(y+3-k;y+3+k)∈{(1;88);(88;1);(-1;-88);(-88;-1);(2;44);(44;2);(-2;-44);(-44;-2);(4;22);(-4;-22);(22;4);(-22;-4);(8;11);(-8;-11);(11;8);(-11;-8)}

TH1: y+3-k=1 và y+3+k=88

=>y+3-k+y+3+k=1+88

=>2y+6=89

=>2y=83

=>y=41,5(loại)

TH2: y+3-k=88 và y+3+k=1

=>y+3-k+y+3+k=1+88

=>2y+6=89

=>2y=83

=>y=41,5(loại)

TH3: y+3-k=-1 và y+3+k=-88

=>=>y+3-k+y+3+k=-1-88

=>2y+6=-89

=>2y=-95

=>y=-47,5(loại)

TH4: y+3-k=-88 và y+3+k=-1

=>=>y+3-k+y+3+k=-1-88

=>2y+6=-89

=>2y=-95

=>y=-47,5(loại)

TH5: y+3-k=2 và y+3+k=44

=>y+3-k+y+3+k=2+44

=>2y+6=46

=>2y=40

=>y=20(nhận)

\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)

=>\(2x^2+57x+351=0\)

=>\(\left(2x+39\right)\left(x+9\right)=0\)

=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)

TH6: y+3-k=44 và y+3+k=2

=>y+3-k+y+3+k=2+44

=>2y+6=46

=>2y=40

=>y=20(nhận)

\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)

=>\(2x^2+57x+351=0\)

=>\(\left(2x+39\right)\left(x+9\right)=0\)

=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)

TH7: y+3-k=-2 và y+3+k=-44

=>y+3-k+y+3+k=-2-44

=>2y+6=-46

=>2y=-52

=>y=-26

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)

=>\(2x^2-81x+765=0\)

=>(x-15)(2x-51)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)

TH8: y+3-k=-44 và y+3+k=-2

=>y+3-k+y+3+k=-2-44

=>2y+6=-46

=>2y=-52

=>y=-26

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)

=>\(2x^2-81x+765=0\)

=>(x-15)(2x-51)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)

TH9: y+3-k=4 và y+3+k=22

=>y+3-k+y+3+k=4+22

=>2y+6=26

=>2y=20

=>y=10

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)

=>\(2x^2+27x+81=0\)

=>\(2x^2+18x+9x+81=0\)

=>(x+9)(2x+9)=0

=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)

TH10: y+3-k=22 và y+3+k=4

=>y+3-k+y+3+k=4+22

=>2y+6=26

=>2y=20

=>y=10

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)

=>\(2x^2+27x+81=0\)

=>\(2x^2+18x+9x+81=0\)

=>(x+9)(2x+9)=0

=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)

TH11: y+3-k=-4 và y+3+k=-22

=>y+3-k+y+3+k=-4-22

=>2y+6=-26

=>2y=-32

=>y=-16

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)

=>\(2x^2-51x+315=0\)

=>\(2x^2-30x-21x+315=0\)

=>(x-15)(2x-21)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)

TH12: y+3-k=-22 và y+3+k=-4

=>y+3-k+y+3+k=-4-22

=>2y+6=-26

=>2y=-32

=>y=-16

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)

=>\(2x^2-51x+315=0\)

=>\(2x^2-30x-21x+315=0\)

=>(x-15)(2x-21)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)

TH13: y+3-k=8 và y+3+k=11

=>y+3-k+y+3+k=8+11

=>2y+6=19

=>2y=13

=>y=6,5(loại)

TH14: y+3-k=11 và y+3+k=8

=>y+3-k+y+3+k=8+11

=>2y+6=19

=>2y=13

=>y=6,5(loại)

TH15: y+3-k=-8 và y+3+k=-11

=>y+3-k+y+3+k=-8-11

=>2y+6=-19

=>2y=-25

=>y=-12,5(loại)

TH16: y+3-k=-11 và y+3+k=-8

=>y+3-k+y+3+k=-8-11

=>2y+6=-19

=>2y=-25

=>y=-12,5(loại)

Trần Thị Long Biên
Xem chi tiết
Nguyễn Ngọc Quý
4 tháng 1 2016 lúc 20:24

|(x - 23)(x + 12)| = 0

Th1: x - 23 = 0 => x = 23

Th2: x  + 12= 0  => x=  -12

 

Nguyễn Tuấn Tài
4 tháng 1 2016 lúc 20:28

 |( x - 23)( x + 12)| =0

=> x-23=x+12 hoặc x-23=-x+12

sau đó gom x lại áp dugnj quy tắc chuyển vế là ra

Đoàn Thế Đan
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 7 2019 lúc 2:19