0 1 2 3 4 5 6 7 lập dc bn số có 10 chữ số trong đó số 3 có mặt đúng 3 lần và các số khác xuất hiện 1 lần
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có 8 chữ số, trong đó chữ số 1 và chữ số 6 có mặt đúng 2 lần còn các chữ số khác xuất hiện 1 lần.
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có 8 chữ số, trong đó chữ số 1 và chữ số 6 có mặt đúng 2 lần còn các chữ số khác xuất hiện 1 lần.
A.10 080 số
B. 10 008 số
C. 10 800 số
D. 18 000 số
Từ các chữ số 0; 1; 2; 3; 4 có thể lập được bao nhiêu số:Có 8 chữ số trong đó chữ số 1có mặt 3 lần, chữ số 4 xuất hiện 2 lần; các chữ số còn lại có mặt đúng một lần.
A. 1200
B. 6480
C. 2940
D. Tất cả sai
Xếp số vào 8 ô trống thỏa yêu cầu đề bài.
Bước 1: Chọn 3 ô trong 8 ô để xếp 3 chữ số 1, có cách.
Bước 2: Chọn 2 ô trong 5 ô còn lại để xếp 2 chữ số 4, có cách.
Bước 3: Xếp 3 chữ số số còn lại vào 3 ô còn lại, có 3! cách.
Vậy có số thỏa yêu cầu, nhưng có những số có chữ số 0 đứng vị trí đầu tiên.
Trường hợp số 0 ở ô thứ nhất.
Bước 1: Chọn 3 ô trong 7 ô còn lại, xếp 3 chữ số 1, có cách.
Bước 2: Chọn 2 ô trong 4 ô còn lại, xếp 2 chữ số 4, có cách.
Bước 3: Xếp hai chữ số còn lại vào 2 ô còn lại, có 2! cách.
Vậy có: số mà chữ số 0 ở vị trí đầu tiên.
Kết luận có: số thỏa yêu cầu.
Chọn C.
Từ các chữ số 0; 1; 2; 3; 4 có thể lập được bao nhiêu số: Có 9 chữ số trong đó chữ số 0 có mặt 2 lần,chữ số hai có mặt ba lần và chữ số 3 có mặt 2 lần các chữ số còn lại có mặt đúng một lần.
A. 15120
B. 11760
C. 7200
D. Tất cả sai
Xếp số vào 9 ô trống thỏa yêu cầu đề bài:
Bước 1: Chọn 2 ô trong 8 ô (bỏ ô đầu tiên) để xếp hai chữ số 0, có cách chọn.
Bước 2: Chọn 3 ô trong 7 ô còn lại để xếp ba chữ số 2, có cách.
Bước 3: Chọn 2 ô trống trong 4 ô còn lại để xếp 2 chữ số 3, có cách chọn.
Bước 4: Hai ô còn lại xếp 2 chữ số còn lại, có 2! Cách xếp.
Theo quy tắc nhân có:
số thỏa yêu cầu bài toán.
Chọn B.
với 3 chữ số khác nhau và khác 0 ta lập được 6 số có 3 chữ số được xuất hiện 1 lần tìm 3 chữ số đó biết rằng 1 trong 6 số vừa lập có 1 một số bằng trung bình cộng của 6 số đó
Từ 10 chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 có thể lập được bao nhiêu số gồm 6 chữ số khác nhau, sao cho trong các chữ số đó có mặt chữ số 0 và 1.
A. 2100
B. 4320
C. 36000
D. 42000
Gọi số cần lập
Bước 1: Xếp chữ số 0 vào 1 trong 5 vị trí từ a2 đến a6, có 5 cách xếp.
Bước 2: Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn), có 5 cách xếp.
Bước 3: Chọn 4 chữ số trong 8 chữ số {2, 3, 4, 5, 6 , 7, 8, 9}để xếp vào 4 vị trí còn lại, có cách.
Theo quy tắc nhân có số thỏa yêu cầu.
Chọn D.
Mọi người giúp mình câu này được không ạ? Cho mình cảm ơn ạ.
Từ các chữ số 0; 1; 2, 3, 5; 6 có thể lập được bao nhiêu số tự nhiên gồm 10 chữ số trong đó chữ số 1 hiện diện 3 lần, chữ số 2 hiện diện 2 lần còn các chữ số khác hiện diện chỉ 1 lần.
Số số thỏa mãn: \(\dfrac{9!}{5!}=3024\) số
(Đây là loại hoán vị lặp)
Có bao nhiêu số tự nhiên có 5 chữ số được lập từ các số 0,1,2,3,4,5,6,7,8. Trong đó chủ số 3 có mặt đúng 2 lần. Các chữ số khác có mặt 1 lần?