Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Trung Anh
Xem chi tiết
Phạm Tường Lan Vy
Xem chi tiết
luu thanh huyen
Xem chi tiết
Phạm Cẩm Tú
Xem chi tiết
I - Vy Nguyễn
24 tháng 2 2020 lúc 23:53

  Từ  : 

   \(x^3+y^3+z^3=x+y+z+2017\)  \(\implies\)  \(\left(x^3-x\right).\left(y^3-y\right).\left(z^3-z\right)=2017\left(1\right)\)

Chứng minh được :\(x^3-x=x.\left(x-1\right).\left(x+1\right)\)

\(y^3-y=y.\left(y-1\right).\left(y+1\right)\)

\(z^3-1=y.\left(y-1\right).\left(y+1\right)\)

Vì x, y, z  là các số nguyên nên

\(x.\left(x-1\right).\left(x+1\right);y.\left(y-1\right).\left(y+1\right);z.\left(z-1\right).\left(z+1\right)\) là tích của ba số nguyên liên tiếp nên chia hết cho 3

Do đó vế trái của (1) luôn chia hết cho 3 mà 2017 không chia hết cho 3

 Vậy không có số nguyên x,y,z nào thỏa mãn ycbt

Khách vãng lai đã xóa
Nguyễn Thị Phương Anh
Xem chi tiết
I - Vy Nguyễn
24 tháng 2 2020 lúc 23:11

  Ta có: \(x^3+y^3+z^3=x+y+z+2017\left(1\right)\)

\(\implies\) \(\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2017\)

chứng minh được :                                                    

       \(x^3-x=x.\left(x^2-1\right)=x.\left(x-1\right).\left(x+1\right)\)

       \(y^3-y=y.\left(y^2-1\right)=y.\left(y-1\right).\left(y+1\right)\)

        \(z^3-z=z.\left(z^2-1\right)=z.\left(z-1\right).\left(z+1\right)\)

   Vì x,y,z là các số nguyên nên:

\(x.\left(x-1\right).\left(x+1\right);y.\left(y-1\right).\left(y+1\right);z.\left(z-1\right).\left(z+1\right)\) là tích của ba số nguyên liên tiếp nên chia hết cho 3

   Do đó vế trái của (1) luôn chia hết cho 3 , mà 2017 không chia hết cho 3 

Vậy không có các số nguyên x,y,z thỏa mãn yêu cầu bài toán 

Khách vãng lai đã xóa
Lăng Phan Nguyễn
Xem chi tiết
ngonhuminh
24 tháng 1 2017 lúc 20:49

f)

\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)

x-3={-4)=> x=-1

Bánh Bao Nhân Thịt
Xem chi tiết
pham thi loan
Xem chi tiết
Đỗ Thị Thanh Lương
16 tháng 3 2017 lúc 20:21

chưa học nên ko biết

Nguyễn Anh Quân
Xem chi tiết