tìm giá trị nhỏ nhất của biểu thức E=5-3x/4x-8(x thuộc Z, x khác 2)
giúp mk ik mốt mk thi ù
tìm giá trị nhỏ nhất của biểu thức E = 5-3x/4x-8 (x E Z/ x ko = 2
Tìm giá trị nhỏ nhất của biểu thức E = \(\dfrac{5-3x}{4x-8}\)(x ∈ Z, x ≠ 2)
ta có \(\dfrac{5-3x}{4x-8}=\dfrac{-\dfrac{3}{4}\left(4x-8\right)-1}{4x-8}=-\dfrac{3}{4}-\dfrac{1}{4x-8}\)
x ∈ Z, x ≠ 2 nên 4x-8≠0
Mà \(\dfrac{1}{4x-8}< 1\Leftrightarrow-\dfrac{1}{4x-8}>-1\)
\(\Rightarrow E=-\dfrac{3}{4}-1=-\dfrac{7}{4}\)
Tìm giá trị nhỏ nhất của biểu thức:
\(E=\frac{5-3x}{4x-8}\) (x ∈ Z, x ≠ 2)
Ta có: \(E=\frac{5-3x}{4x-8}\)
\(=\frac{-3x+5}{4x-8}\)
\(=\frac14\cdot\frac{-12x+20}{4x-8}=\frac14\left(\frac{-12x+24-4}{4x-8}\right)=\frac14\left(-3-\frac{4}{4x-8}\right)\)
\(=\frac14\left(-3-\frac{1}{x-2}\right)\)
Để E có giá trị nhỏ nhất thì \(-3-\frac{1}{x-2}\) nhỏ nhất
=>\(-\frac{1}{x-2}\) nhỏ nhất
=>\(\frac{1}{x-2}\) lớn nhất
=>x-2=1
=>x=3
=>\(E_{\max}=\frac14\left(-3-\frac{1}{3-2}\right)=\frac14\left(-3-\frac11\right)=\frac14\cdot\left(-4\right)=-1\)
tìm giá trị nhỏ nhất của biểu thức E=\(\dfrac{5-3x}{4x-8}\)(xϵz, x≠2)
Câu 1: Tính giá trị nhỏ nhất của biểu thức : \(E=\frac{5-3x}{4x-8}\left(x\in Z,x\ne2\right)\)
E=\(\dfrac{5-3x}{4x-8}=\dfrac{-3\left(x-2\right)-1}{4\left(x-2\right)}=\dfrac{-3}{4}-\dfrac{1}{4x-8}\)nhỏ nhất ⇔\(\dfrac{1}{4x-8}\) lớn nhất
⇔4x-8 nhỏ nhất ⇔4x-8=1(vì mẫu lớn hơn 0)
⇔x=\(\dfrac{9}{4}\)
Vậy GTNN của E=-\(\dfrac{7}{4}\)khi x=\(\dfrac{9}{4}\)
tìm giá trị nhỏ nhất của biểu thức E = \(\frac{5-3x}{4x-8}\left(x\in Z,x\ne2\right)\)
giá trị nhỏ nhất của biểu thức A= 7-4x/5x-10 (x thuộc Z, x khác 2)
\(A=\dfrac{-4x+7}{5x-10}=\dfrac{1}{5}\cdot\dfrac{-20x+35}{5x-10}\)
\(=\dfrac{1}{5}\cdot\dfrac{-20x+40-5}{5x-10}\)
\(=\dfrac{1}{5}\cdot\left(-4-\dfrac{5}{5x-10}\right)\)
\(=\dfrac{1}{5}\cdot\left(-4-\dfrac{1}{x-2}\right)\)
A min khi x-2=1
=>x=3
Câu 1: Tính giá trị nhỏ nhất của biểu thức : \(E=\frac{5-3x}{4x-8}\left(x\in Z,x\ne2\right)\)