Tìm số nguyên x biết:
a.(x-3)=(x-3)^2
b.2016+2015+2014+.....+x=2016
Tìm các số nguyên x; y biết: x^2013+ x^2014+ 2009^2015= y^2015+ y^2016+ 2010^2016
Tìm x thuộc Z biết:
1) 2016+2015+2014+...+x = 2016
2) 1+2+3+...+x = 1275
3) | x+2015 | + | x+2016| = 1
thiện xạ 5a3 có thể giải chi tiết ra đc k? Mk cần cách lm
2) 1+2+3+...+x=1275
Có SSH là: (x+1):1+1=x(SH)
=> (x+1).x:2=1275
=>(x+1).x=1275.2
=>(x+1).x=2550
=>(x+1).x=51.50
=>x=50
3) |x+2015|+|x+2016|=1
Ta thấy |x+2015| và |x+2016| > hoặc = 0 với mọi x
=> 1= 0+1=1+0
+) x+2015=0=>x=-2015
x+2016=1=>x=-2015
+) x+2015=1=>x=-2014
x+2016=0=> x=-2016
Vậy xE{...}
1 Tìm các số nguyên x,y tm
x^2013+x^2014+2009^2015=y^2015+y^2016+2010^2016
2 tìm số tự nhiên x,y biết 7*(x-2015)^2=23-y^2
Tìm x :
\(\frac{x=2015}{2016}+\frac{x+2016}{2015}+\frac{x+2017}{2014}=-3\)
\(\frac{x+2015}{2016}+\frac{x+2016}{2015}+\frac{x+2017}{2014}=-3\)
\(\Leftrightarrow\frac{x+2015}{2016}+1+\frac{x+2016}{2015}+1+\frac{x+2017}{2014}+1=0\)
\(\Leftrightarrow\frac{x+4031}{2016}+\frac{x+4031}{2015}+\frac{x+4031}{2014}=0\)
\(\Leftrightarrow\left(x+4031\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\right)=0\)
Có: \(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\ne0\)
\(\Rightarrow x+4031=0\)
\(\Rightarrow x=-4031\)
Tìm tất cả các số nguyên x để 20142015+20162017chia hết cho x3+2x
tìm x biết
\(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+...+\frac{x-2016}{1}=2016\\ \)
\(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+...+\frac{x-2016}{1}=2016\)
\(\Leftrightarrow\frac{x-1}{2016}-1+\frac{x-2}{2015}-1+\frac{x-3}{2014}-1+...+\frac{x-2016}{1}-1=0\)
\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}+\frac{x-2017}{2014}+...+\frac{x-2017}{1}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+...+1\right)=0\)
Có: \(\frac{1}{2016}+\frac{1}{2015}+...+1\ne0\)
\(\Rightarrow x-2017=0\)
\(\Rightarrow x=2017\)
<=> \(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+....+\frac{x-2016}{1}-2016=0\)\(=0\)
<=> \(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)+...+\left(\frac{x-2016}{1}-1\right)=0\)
<=> \(\frac{x-2017}{2016}+\frac{x-2017}{2015}+...+\frac{x-2017}{1}=0\)
<=> \(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+...+\frac{1}{1}\right)=0\)
<=> \(x-2017=0\)\(\left(do\frac{1}{2016}+\frac{1}{2015}+...+\frac{1}{1}>0\right)\)
<=> \(x=2017\)
Vậy x = 2017
đúng thì
Tìm x biết |x-2014|+|x-2015|+|x-2016|=3
Lập bảng xét dấu
Ta được 4 trường hợp sau:
-Nếu \(x< 2014\) thì \(\left|x-2014\right|+\left|x-2015\right|+\left|x-2016\right|=3\) (1)
\(\Leftrightarrow2014-x+2015-x+2016-x=3\)
\(\Leftrightarrow6045-3x=3\)
\(\Leftrightarrow3x=6042\)
\(\Leftrightarrow x=2014\) (loại)
-Nếu \(2014\le x< 2015\) thì (1) tương đương:
\(x-2014+2015-x+2016-x=3\)
\(\Leftrightarrow2017-x=3\)
\(\Leftrightarrow x=2014\) (nhận)
-Nếu \(2015\le x< 2016\) thì (1) tương đương:
\(x-2014+x-2015+2016-x=3\)
\(\Leftrightarrow-2013+x=3\)
\(\Leftrightarrow x=2016\) (loại)
-Nếu \(x\ge2016\) thì (1) tương đương:
\(x-2014+x-2015+x-2016=3\)
\(\Leftrightarrow-6045+3x=3\)
\(\Leftrightarrow3x=6048\)
\(\Leftrightarrow x=2016\) (nhận)
Vậy x = 2014 hoặc x = 2016
Câu1: tìm số nguyên x mà -35/6<x>-18/5
Câu2 : so sánh A=2015/2016+2016/2017 và B= 2015+2016/2016+2017
Câu3 : tìm số nguyên x biết rằng : 1/3+1/6+1/10...+2/x(x+1) =2007/2009
câu 1. tìm x nguyên để \(\frac{-35}{6}\)<x<\(\frac{-18}{5}\)
<=> -4,375<x<-3,6
mà x\(\in\)Z nên x={-4}
câu 2. A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)
B=\(\frac{2015+2016}{2016+2017}\)=\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)
Vì \(\frac{2015}{2016+2017}\)<\(\frac{2015}{2016}\); \(\frac{2016}{2016+2017}\)<\(\frac{2016}{2017}\)
Vậy B<A
cau3:
\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+.....+\(\frac{2}{x\left(x+1\right)}\)=\(\frac{2007}{2009}\)
2.(\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+.....+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+.....+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+.....+\(\frac{1}{x}\)-\(\frac{1}{x+1}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2}\)-\(\frac{1}{x+1}\))=\(\frac{2007}{2009}\)
\(\frac{1}{2}\)-\(\frac{1}{x+1}\)=\(\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2}\)-\(\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2009}\)
x+1=2009
x=2009-1
x=2008
a, x+1/2013+x+1/2014+x+1/2015=x+1/2016+x+1/2017
b,x-1/2013+x-2/2014+x-3/2015=x-4/2016-2