Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thanh	Dung
Xem chi tiết
online
Xem chi tiết
khoa le nho
Xem chi tiết
khoa le nho
15 tháng 3 2020 lúc 11:05

Giúp mình 

Khách vãng lai đã xóa
Phùng Gia Bảo
15 tháng 3 2020 lúc 21:43

Không mất tính tổng quát giả sử \(a\ge b\ge c\). Khi đó, ta dễ dàng có được \(a^n\ge b^n\ge c^n\)và \(\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\)

Áp dụng bất đẳng thức Chebyshev, ta có: \(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\ge\frac{1}{3}\left(a^n+b^n+c^n\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

P/s: Đây là một bước nhỏ trong một cách chứng minh dạng tổng quát của bđt Nesbit

Khách vãng lai đã xóa
khoa le nho
16 tháng 3 2020 lúc 10:26

ủa trebyshev có dạng như vậy hả bạn 

Khách vãng lai đã xóa
Itsuka Hiro
Xem chi tiết
Nguyễn Thị Thanh	Dung
Xem chi tiết
Công chúa âm nhạc
Xem chi tiết
phùng thị thu hải
Xem chi tiết
Cold Wind
26 tháng 6 2016 lúc 8:53

VP:

\(\frac{1}{n\left(n-1\right)}-\frac{1}{n\left(n+1\right)}\)

\(=\frac{n\left(n+1\right)}{\left[n\left(n-1\right)\right]\left[n\left(n+1\right)\right]}-\frac{n\left(n-1\right)}{\left[n\left(n-1\right)\right]\left[n\left(n+1\right)\right]}\)

\(=\frac{n^2+n}{\left(n^2-n\right)\left(n^2+n\right)}-\frac{n^2-n}{\left(n^2-n\right)\left(n^2+n\right)}\)

\(=\frac{\left(n^2+n\right)-\left(n^2-n\right)}{\left(n^4-n^3+n^3-n^2\right)-\left(n^4-n^3+n^3-n^2\right)}\)

\(=\frac{2n}{\left(n^4-n^2\right)-\left(n^4-n^2\right)}\)

\(=\frac{2n}{0}\)

Ủa! Hình như tớ lm sai ở đâu đó.

Dương Anh Tú
Xem chi tiết
NBH Productions
Xem chi tiết