Cho đường tròn tâm O đường kính AB, và điểm H cố định thuộc AB. Từ điểm K thay đổi trên tiếp tuyến tại B của O, vẽ đường tròn (K; KH) cắt (O) tại C và D. Cho biết CD có gì đặc biệt? các bạn giúp mình nhé.
Cho đường tròn tâm O đường kính AB và điểm H cố định trên AB , Từ B vẽ tiếp tuyến xy và trên xy lấy K di động. Vẽ đường tròn (K , KH) cắt đường tròn O tại C và D . Chứng minh rằng đường thẳng CD luôn đi qua 1 điêm cố định
Cho đường tròn tâm O,đường AB cố định.H là điểm cố định thuộc đoạn OA (H ko trùng O và A).Qua H vẽ đường thẳng vuông góc với AB cắt đường tròn O tại C và D.Gọi K là điểm tùy ý thuộc cung lớn CD(K ko trùng các điểm C,D và B).I là giao điểm của AK và CD
Chứng Minh : khi K thay đổi trên cung lớn CD của đường tròn tâm O thì tâm đường tròn ngoại tiếp tam giác KCI luôn thuộc 1 đường thẳng cố định
Cho đường tròn tâm O,đường AB cố định.H là điểm cố định thuộc đoạn OA (H ko trùng O và A).Qua H vẽ đường thẳng vuông góc với AB cắt đường tròn O tại C và D.Gọi K là điểm tùy ý thuộc cung lớn CD(K ko trùng các điểm C,D và B).I là giao điểm của AK và CD
Chứng Minh : khi K thay đổi trên cung lớn CD của đường tròn tâm O thì tâm đường tròn ngoại tiếp tam giác KCI luôn thuộc 1 đường thẳng cố định
em đang cần gấp
Cho đường tròn tâm O,đường AB cố định.H là điểm cố định thuộc đoạn OA (H ko trùng O và A).Qua H vẽ đường thẳng vuông góc với AB cắt đường tròn O tại C và D.Gọi K là điểm tùy ý thuộc cung lớn CD(K ko trùng các điểm C,D và B).I là giao điểm của AK và CD
Chứng Minh : khi K thay đổi trên cung lớn CD của đường tròn tâm O thì tâm đường tròn ngoại tiếp tam giác KCI luôn thuộc 1 đường thẳng cố định
MONG CÓ AI ĐÓ TRẢ LỜI ĐƯỢC CÂU HỎI Ở TRÊN
Cho đường tròn tâm O,đường AB cố định.H là điểm cố định thuộc đoạn OA (H ko trùng O và A).Qua H vẽ đường thẳng vuông góc với AB cắt đường tròn O tại C và D.Gọi K là điểm tùy ý thuộc cung lớn CD(K ko trùng các điểm C,D và B).I là giao điểm của AK và CD
Chứng Minh : khi K thay đổi trên cung lớn CD của đường tròn tâm O thì tâm đường tròn ngoại tiếp tam giác KCI luôn thuộc 1 đường thẳng cố định
MONG ANH CHỊ GIÚP ĐỠ (EM ĐANG CẦN GẤP)
Cho đường tròn tâm O đường kính AB . Gọi C là một điểm thuộc nũa đường tròn. Vẽ tiếp tuyến Ax của đường tròn tâm O, đường phân giác của góc CAx cắt cung AC tại E. Đường thẳng AE và đường thẳng BC cắt nhau tại K. Chứng minh rằng khi điểm C chuyển động trên đường tròn tâm O thid điểm K chuyển động trên một đường cố định
Cho đường tròn tâm O bán kính R và điểm A thuộc đường tròn. Trên tiếp tuyến tại A lấy 1 điểm K cố định. Một đường thẳng (d) thay đổi đi qua K và không đi qua tâm O cắt (O) tại B và C ( B nằm giữa C và K). Gọi M là trung điểm BC.
1.CM: A,O,M,K thuộc 1 đường tròn
2.Vẽ đường kính AN của đường tròn tâm O, đường thẳng qua A và vuông góc vứi BC cắt MN tại H.CM: tứ giác BHCN là hình bình hành.
3.CM: H là trực tâm tam giác ABC.
4. Khi đường thẳng (d) thay đổi và thỏa mãn điều kiện đề bài thì H di động trên đường thẳng nào
Ai làm giúp với =((
a) ΔOBCΔOBC có OB=OC=ROB=OC=R nên ΔOBCΔOBC cân đỉnh OO,
có OMOM là đường trung tuyến nên OMOM cũng là đường cao
⇒OM⊥CB⇒OM⊥CB
⇒ˆOMB=90o⇒OMB^=90o
Tứ giác AOMKAOMK có ˆOMK+ˆOAK=90o+90o=180oOMK^+OAK^=90o+90o=180o
Do đó AOMKAOMK nội tiếp đường tròn đường kính (OK)(OK)
b) Xét ΔAHNΔAHN có:
OM∥AHOM∥AH (vì cùng ⊥BC⊥BC)
OO là trung điểm của ANAN
⇒OM⇒OM là đường trung bình ΔAHNΔAHN
⇒M⇒M là trung điểm HNHN
Tứ giác BHCNBHCN có hai đường chéo CBCB và HNHN cắt nhau tại MM là trung điểm của mỗi đường
⇒BHCN⇒BHCN là hình bình hành.
c) Ta có ΔACNΔACN nội tiếp đường tròn (O)(O) đường kính ANAN
nên ˆACN=90o⇒CN⊥ACACN^=90o⇒CN⊥AC
Tứ giác BHCNBHCN là hình bình hành
⇒BH∥CN⇒BH∥CN mà CN⊥ACCN⊥AC
⇒BH⊥AC⇒BH⊥AC
Lại có AH⊥BCAH⊥BC
ΔABCΔABC có BHBH và CHCH là 2 đường cao cắt nhau tại HH
nên HH là trực tâm ΔABCΔABC
d) MM là trung điểm cạnh BCBC
Lấy điểm O′O′ đối xứng với OO qua MM do B,CB,C cố định suy ra MM cố đinh suy ra O′O′ cố định
Ta có: OM∥AHOM∥AH (vì vùng ⊥BC⊥BC)
⇒OO′∥AH⇒OO′∥AH,
OMOM là đường trung bình ΔAHN⇒OM=12AH⇒AH=2OM=OO′ΔAHN⇒OM=12AH⇒AH=2OM=OO′
Do đó AOO′HAOO′H là hình bình hành
⇒O′H=OA=R⇒O′H=OA=R không đổi
Dựng hình bình hành HO′KTHO′KT ta được KT∥O′HKT∥O′H và có KT=O′HKT=O′H nên TT cố định
TH=O′K=OKTH=O′K=OK
Vậy H∈(T;KO)
Cho đường tròn (O; R) và điểm A cố định thuộc đường tròn. Trên tiếp tuyến với (O) tại A lấy một điểm K cố định. Một đường thẳng d thay đổi đi qua K và không đi qua tâm O cắt (O) tại điểm B và C (B nằm giữa C và K), Gọi M là trung điểm của BC.
1) Chứng minh bốn điểm A, O, M, K cùng thuộc một đường tròn.
2) Vẽ đường kính AN của đường tròn (O). Đường thẳng qua A và vuông góc với BC cắt MN tại H. Chứng minh tứ giác BHCN là hình bình hành.
3) Chứng minh H là trực tâm tam giác ABC
4) Khi đường thẳng d thay đổi và thỏa mãn điều kiện của đề bài, điểm H di động trên đường nào?
Cho đường tròn tâm O, bán kính R có đường kính AB cố định. C là một điểm thay đổi trên đường tròn (C khác A và B). Gọi H là hình chiếu của C trên AB, I là trung điểm của AC. Đường thẳng OI cắt tiếp tuyến tại A của đường tròn (O;R) tại M, đường thẳng MB cắt đường thẳng CH tại K. Chứng minh IK song song với AB