tìm tất cả số tự nhiên k, để
a. 7 x k là số nguyên tố
b. k;k+6;k+8;k+12;k+14 đều là các số nguyên tố
tìm tất cả các số tự nhiên k sao cho 13.k là số nguyên tố
nếu k=0 thì 13.k =13.0=0 là hợp số,loại
nếu k=1thì 13.k=13.1=13 ,chọn
nếu k lớn hơn hoặc bằng 2 thì 13.k có ước là 13 khác 1 và 13.k nên suy ra số đó là hợp số ,loại
vậy k=1
Tìm tất cả các số tự nhiên k sao cho dãy số k ; k + 1; k + 2 ; ... ; k + 10 chứa nhiều số nguyên tố nhất
+) Với k = 1 thì dãy trên có 5 số nguyên tố là 2,3,5,7,11.
+) Với k = 0 thì dãy trên có 4 số nguyên tố là 2,3,5,7.
+) Với k \(\ge\) 2 thì các số của dãy trên đều không nhỏ hơn 3 và trong 10 số đó có 5 số chẵn là hợp số và 5 số lẻ liên tiếp, trong các số lẻ này có ít nhất một số khác 3 mà chia hết cho 3. Do đó số các số nguyên tố không vượt quá 4.
Vậy k = 1 thì dãy chứa nhiều số nguyên tố nhất.
Hãy tìm 1 tập hợp M gồm 7 số tự nhiên liên tiếp sao cho có một đa thức P(x) bậc 5 thoả mãn các điều kiện sau đây:
a) Tất cả các hệ số của P(x) đều là số nguyên
b) Với năm số k thuộc M (kể cả số lớn nhất và số nhỏ nhất) ta đều có P(k)=k
Hãy tìm 1 tập hợp M gồm 7 số tự nhiên liên tiếp sao cho có một đa thức P(x) bậc 5 thoả mãn các điều kiện sau đây:
a) Tất cả các hệ số của P(x) đều là số nguyên
b) Với năm số k thuộc M (kể cả số lớn nhất và số nhỏ nhất) ta đều có P(k)=k
Câu hỏi của Ngân Hoàng Xuân - Toán lớp 8 | Học trực tuyến
Tìm số tự nhiên k để 3 . k là số nguyên tố.
Tìm số tự nhiên k để 7 . k là số nguyên tố
tìm số tự nhiên k để 3 . k là số nguyên tố
tìm số tự nhiên k để 7 . k là số nguyên tố
Số nguyên tố là số chỉ có 2 ước là 1 và chính nó. Nếu k lớn hơn 1 thì 3.k hay 7.k không phải là số nguyên tố vì khi đó chúng có nhiều hơn 2 ước.
=> k = 1
-Loại bỏ trường hợp k = 0 vì như thế 3.k không thể là số nguyên tố.
Tìm số tự nhiên k để 3.k là số nguyên tố
Tìm số tự nhiên k để 7.k là số nguyên tố
Xét K=0=>3k=0(loại)
Xét K=1=>3k(thỏa mãn)
Xét k>1=>3k có nhiều hơn 2 ước (loại)
=> k=1
Tương tự với câu 7k
Tìm số tự nhiên k để 3.k là số nguyên tố
Tìm số tự nhiên k để 7.k là số nguyên tố
xét k=0=>3k=0(loại)
xét k=1=>3k=3(thỏa mãn)
xét k>1=>.3k có nhiều hơn 2 ước(loại)
=>k=1
tương tự với câu 7k
a) Nếu k > 1 thì 3k có ít nhất ba ước là 1, 3, k; nghĩa là nếu k > 1 thì 3k là một hợp số. Do đó để 3k là một số nguyên tố thì k = 1.
b) ĐS: k = 1
a) Tìm số tự nhiên k để 3.k là số nguyên tố
b) Tìm số tự nhiên k để 7.k là số nguyên tố
a) \(k=1\) vì nếu \(k>1\) thì \(3k⋮3\) \(\rightarrow\)không phải là số nguyên tố
b) \(k=1\) vì nếu \(k>1\) thì \(7k⋮7\) \(\rightarrow\) không phải là số nguyên tố