Tính N = 2003 . (20049 + 20048+ ... + 20042 + 2005) + 1
Tính N=2003(2004^9+2004^8+...+2004^2+2005)+1
D=1/2003 . 3/1/2005 - 4/2002/2003 . 4/2005 - 5/2003.2005+4/401
Tính giá trị biểu thức
Tính N = 2003(2004^9+2004^8+2004^7+...+2004^2+2005)+1
có thiếu đề ko đó bn...tính sao mak ra dc..??
Tính N = 2003(2004^9+2004^8+2004^7+...+2004^2+2005)+1
N=2003(2004(9+8+7+...+2)+2015)+1
Dat A=9+8+7+...+2
A có số số hạng là (9-2)*1+1=8 so hang
A=(9+2)*8/2=44
N=2003(2004*44+2005)+1
N=2003*(88176+2005)+1
N=2003*90181+1=180632543+1=180632544
số to quá
DUYỆT NHA
2004N=2003(2004^10+2004^9+...+2004^2+2004^1)+2004
2004N-N=2003(2004^10-1)+2003
2003N=2003(2004^10-1+1)
N=2003:2003(2004^10)
N=2004^10
Tính: 1/2003+1/2004+1/2005
2/2003+2/2004+2/2005
\(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{2}{2003}+\frac{2}{2004}+\frac{2}{2005}}\)
= \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{1}{2003}.2+\frac{1}{2004}.2+\frac{1}{2005}.2}\)
= \(\frac{1.\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}{2.\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}\)
\(=\frac{1}{2}\)
Tính : P = \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
Tính kết quả sau: { 2003 x 2004+ 2004 x 2005 }x { 2005 :1 -1 x2005}
={2003 x 2004 x 2005} x {2005 - 2005}
={2003 x 2004 x 2005} x 0
=0
={2003 x 2004 x 2005} x {2005 - 2005}
={2003 x 2004 x 2005} x 0
=0
Tính kết quả sau:
[ 2003 x 2004 + 2004 x 2005} x{ 2005:1 - 1 x2005}
[ 2003 x 2004 + 2004 x 2005} x { 2005 : 1 - 1 x 2005}
= 8032032 x 0 = 0
Tính :
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
Ta có:
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(P=\frac{1}{5}\cdot\left(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}\right)-\frac{2}{3}\cdot\left(\frac{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}\right)\)
\(P=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)