CMR : n > 3 thì \(1!+2!+3!+......+n!\)không là số chính phương
CMR với mọi n thuộc N , n> 0 thì n^4+2n^3+2n^2+2n+1 không phải là số chính phương
Cho n thuộc N và n+1 là số chính phương. CMR : ( n+2 ).( n+3 ).( n+4 ) không phải là số chính phương
CHO P=n(n+1)(n+2)(n+3)
cmr: a)với n là số nguyên dương thì p không là số chính phương.
b)tím n để P là số chính phương
1. Cho n lẽ. CMR: n2020 + 1 không phải số chính phương
2. Cho n thuộc Z. CM: A = n4 + 2n3 + 2n2 + n + 7 không phải là số chính phương
3. Cho n lẽ. CM : n3 + 1 không phải là số chính phương
1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)
Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.
2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương
\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)
\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)
Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:
+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)
\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)
+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)
\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.
3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:
---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)
Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau
Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau
---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)
Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)
Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)
-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)
Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.
cmr: với mọi số nguyên dương n thì
n^4+2n^3+2n^2+2n+1 không thể là một số chính phương
MỌI NGƯỜI GIÚP EM VỚI
Bài 1: CMR: \(4n^4+4n^3+6n^2+3n+2\:\)không là số chính phương \(\left(n\inℕ^∗\right)\)
Bài 2: Cho A là tích n số nguyên tố đầu tiên. CMR A+1 không là số chính phương \(n\ge2\)
Bài 3: Cho \(B=1.3.5...2017\). CMR 2B-1, 2B, 2B+1 không là số chính phương
CMR: với mọi n thuộc N, n>0 thì:
A=n4+2n3+2n2+2n+1 không phải là số chính phương
Ta có : A = n2(n2 +2n + 1) + ( n2 + 2n + 1) = (n2+1).(n+1)2
Vì n2 + 1 không phải là số chính phương nên A không phải là số chính phương.
số có dạng n^2+n+1 (n là số nguyên dương) có thể là số chính phương hay k ?
bài 2:một số chính phương có chữ số hàng chục là 3 cmr: chử số hàng đơn vị là 6
bài 3: chừng minh rằng tổng các bình phương của 2 số lẻ thì không chia hết cho 4,hiểu các bình phương của hai số lẻ thì chia hết cho 8
GIÚP MÌNH NHA LÀM ĐƯỢC BÀI NÀO THÌ LÀM
CHO P=\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
cmr: a)với n là số nguyên dương thì p không là số chính phương.
b)tím n để P là số chính phương