tìm số tự nhiên n nhỏ nhất n khác 0 ,sao cho
n chia cho 2 được bình phương của một số tự nhiên ;
n chia cho 3 được lập phương của một số tự nhiên
n chia cho 5 được lũy thừa bậc năm của một số tự nhiên
bạn nào trả lời được mình sẽ tick ngay thanks
1) Tìm số tự nhiên nhỏ nhất khác 0 sao cho khi chia nó cho 2 thì được một số chính phương, khi chia nó cho 3 thì được lập phương của 1 số tự nhiên.
2) Số tự nhiên n chỉ chứa 2 thừa số nguyên tố. Biết n^2 có 21 ước số. Hỏi n^3 có bao nhiêu ước?
Gọi số phải tìm là n; số chính phương đó là a; gọi b là số tự nhiên mà n là lập phương của nó.
Ta thấy n chia hết cho 2 và 3 (vì số chính phương hay lập phương của một số tự nhiên đều là số tự nhiên) nên để n nhỏ nhất, ta chọn n = 2x.3y (x và y khác 0).
n : 2 = 2x.3y : 2 = 2x-1.3y = a2 suy ra x - 1 và y đều chia hết cho 2 hay đều là số chẵn.
n : 3 = 2x.3y : 3 = 2x.3y-1 = b3 suy ra x và y - 1 đều chia hết cho 3.
Từ x - 1 chia hết cho 2 và x chia hết cho 3, để nhỏ nhất ta chọn x = 3
Từ y chia hết cho 2 và y - 1 chia hết cho 3, để nhỏ nhất ta chọn y = 4
Vậy n = 23.34 = 648
Số cần tìm là 648.
Tìm số tự nhiên n nhỏ nhất khác 0 biết :
a) n chia cho 2 được bình phương của một số tự nhiên
b) n chia cho 3 được lập phương của một số tự nhiên
c) n chia cho 5 được lũy thừa bậc năm của một số tự nhiên
Ai làm dc mik k
nhớ giải ra nữa nhé ^_^
cảm ơn chúc các bạn học giỏi
Tìm số tự nhiên nhỏ nhất khác 0 sao cho khi chia nó cho 2 thì được một số chính phương, khi chia nó cho 3 thì được lập phương của một số tự nhiên.
Đây nè:
Gọi số phải tìm là n; số chính phương đó là a; gọi b là số tự nhiên mà n là lập phương của nó.
Ta thấy n chia hết cho 2 và 3 (vì số chính phương hay lập phương của một số tự nhiên đều là số tự nhiên) nên để n nhỏ nhất, ta chọn n = 2x.3y (x và y khác 0).
n : 2 = 2x.3y : 2 = 2x-1.3y = a2 suy ra x - 1 và y đều chia hết cho 2 hay đều là số chẵn.
n : 3 = 2x.3y : 3 = 2x.3y-1 = b3 suy ra x và y - 1 đều chia hết cho 3.
Từ x - 1 chia hết cho 2 và x chia hết cho 3, để nhỏ nhất ta chọn x = 3
Từ y chia hết cho 2 và y - 1 chia hết cho 3, để nhỏ nhất ta chọn y = 4
Vậy n = 23.34 = 648
Số cần tìm là 648.
mình hâm mộ tài năng học tập của : Đinh Tuấn Việt nhất trong online math
dinh tuan viet la hoc sinh gioi cham chi nhat va la nguoi minh kham phuc nhat trong online math
Tìm số tự nhiên nhỏ nhất khác 0 sao cho khi chia nó cho 2 thì được một số chính phương, khi chia nó cho 3 thì được lập phương của một số tự nhiên.
Tìm 2 số thự nhiên nhỏ nhất khác 0 sao cho khi chia số đó cho 2 được một số chính phương, chia nó cho 3 được lập phương của một số tự nhiên.
Gọi số phải tìm là n; số chính phương đó là a; gọi b là số tự nhiên mà n là lập phương của nó.
Ta thấy n chia hết cho 2 và 3 (vì số chính phương hay lập phương của một số tự nhiên đều là số tự nhiên) nên để n nhỏ nhất, ta chọn n = 2x.3y (x và y khác 0).
n : 2 = 2x.3y : 2 = 2x-1.3y = a2 suy ra x - 1 và y đều chia hết cho 2 hay đều là số chẵn.
n : 3 = 2x.3y : 3 = 2x.3y-1 = b3 suy ra x và y - 1 đều chia hết cho 3.
Từ x - 1 chia hết cho 2 và x chia hết cho 3, để nhỏ nhất ta chọn x = 3
Từ y chia hết cho 2 và y - 1 chia hết cho 3, để nhỏ nhất ta chọn y = 4
Vậy n = 23.34 = 648
Số cần tìm là 648.
Tìm số tự nhiên nhỏ nhất khác 0 sao cho khi chia nó cho 2 thì được một số chính phương. Khi chia
nó cho 3 thì được lập phương của một số tự nhiên.
Tìm số tự nhiên nhỏ nhất khác 0 sao cho khi chia nó cho 3 thì được một số chính phương , khi chia nó cho 6 thì được lập phương của một số tự nhiên
Tìm số tự nhiên n nhỏ nhất khác 0 sao cho khi chia n cho 15/6, cho 2/5 ta đều được thương là các số tự nhiên.
Tìm số tự nhiên n khác 0 nhỏ nhất sao cho khi chia n cho 6/7 và chia n cho 3/4 ta đều được kết quả là số tự nhiên
Giải:
Vì khi chia n cho \(\dfrac{6}{7}\) và chia n cho \(\dfrac{3}{4}\) ta đều đc kết quả là số tự nhiên nên ta có:
n ⋮ \(\dfrac{6}{7}\)
n ⋮ \(\dfrac{3}{4}\) ⇒n ∈ BCNN(6;3)
n nhỏ nhất
6=2.3
3=3
⇒BCNN(6;3)=2.3=6
Vậy số tự nhiên n khác 0 nhỏ nhất là 6.
Chúc bạn học tốt!
theo bài ra , ta có :
- a : \(\dfrac{6}{7}\) = \(\dfrac{7n}{6}\) \(\in\) N \(\Rightarrow\) 7n chia hết cho 6 .
Mà ƯCLN ( 7 ; 6 ) = 1 \(\Rightarrow\) n chia hết cho 6 . ( 1 )
- n : \(\dfrac{3}{4}\) = \(\dfrac{4n}{3}\) \(\in\) N \(\Rightarrow\) 4n chia hết cho 3 . ( 2 )
Mà ƯCLN ( 4 ; 3 ) = 1 \(\Rightarrow\) n chia hết cho 3 . ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\) n \(\in\) BC ( 6 ; 3 ) .
Mà n nhỏ nhất \(\Rightarrow\) n = BCNN ( 6 ; 3 ) = 6 .
Vậy số cần tìm là 6 .