Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thanh Trà
Xem chi tiết
Nguyễn Anh Quân
13 tháng 1 2018 lúc 22:25

pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0

<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0

<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12

<=> (3x+2y+2)^2 - (y+1)^2 = -12

<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12

<=> (3x+3y+3).(3x+y+1) = -12

<=> (x+y+1).(3x+y+1) = -4

Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !

Tk mk nha

Sakura
Xem chi tiết
Thanh Dii
Xem chi tiết
Phương Dư Khả
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 16:03

Tham khảo: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM

Khiêm Lê Đình
Xem chi tiết
Trinh Nu Mai Phuong
Xem chi tiết
chien Nguyen
Xem chi tiết

Ta có: \(\frac{2z-4x}{3}=\frac{3x-2y}{4}=\frac{4y-3z}{2}\)

=>\(\frac{6z-12x}{9}=\frac{12x-8y}{16}=\frac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{6z-12x}{9}=\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x+12x-8y+8y-6z}{9+16+4}=0\)

=>6z-12x=0 và 12x-8y=0 và 8y-6z=0

=>12x=8y=6z

=>\(\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

=>x=2k; y=3k; z=4k(Với k∈N*)

\(200

=>\(200<\left(3k\right)^2+\left(4k\right)^2<450\)

=>\(200<25k^2<450\)

=>\(8

mà k là số nguyên dương

nên k∈{3;4}

TH1: k=3

=>\(\begin{cases}x=2\cdot3=6\\ y=3\cdot3=9\\ z=4\cdot3=12\end{cases}\)

TH2: k=4

=>\(\begin{cases}x=2\cdot4=8\\ y=3\cdot4=12\\ z=4\cdot4=16\end{cases}\)

Nguyễn Trần An Thanh
Xem chi tiết
Hắc Thiên
Xem chi tiết