Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Minh Hiếu
Xem chi tiết
Vũ Minh Hiếu
Xem chi tiết
Bá Phong Nguyễn
Xem chi tiết
Pham Van Hung
6 tháng 12 2020 lúc 23:06

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\frac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\frac{b^3}{d^3}\)

\(\frac{a+b^3}{c+d^3}=\frac{bk+b^3}{dk+d^3}\)

Đề bài sai nhé bạn

Khách vãng lai đã xóa
Nguyễn Thị Hải Yến
Xem chi tiết
Đoàn Cẩm Ly
1 tháng 2 2017 lúc 15:19

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}\)\(=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\Rightarrow\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=>Đpcm

quach thi thanh tu
1 tháng 2 2017 lúc 15:29

đoàn cẩm lý sai rồi

Phạm Trần Minh Ngọc
1 tháng 2 2017 lúc 15:34

Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow a=\frac{b^2}{c}\)\(\frac{b}{c}=\frac{c}{d}\Rightarrow d=\frac{c^2}{b}\)

Ta có vế trái  : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(\frac{b^2}{c}\right)^3+b^3+c^3}{b^3+c^3+\left(\frac{c^2}{b}\right)^3}=\frac{\frac{b^6+b^3c^3+c^6}{c^3}}{\frac{b^6+b^3c^3+c^6}{b^3}}\)\(=\frac{b^6+b^3c^3+c^6}{c^3}\cdot\frac{b^3}{b^6+b^3c^3+c^6}=\frac{b^3}{c^3}\)

Ta có vế phải: \(\frac{a}{d}=\frac{\frac{b^2}{c}}{\frac{c^2}{b}}=\frac{b^2}{c}\cdot\frac{b}{c^2}=\frac{b^3}{c^3}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

Hà Thanh Thùy
Xem chi tiết
HOANGTRUNGKIEN
2 tháng 2 2016 lúc 14:35

minh moi hoc lop 6 thoi

Hà My Trần
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
Kuro Kazuya
12 tháng 2 2017 lúc 15:57

Xét: \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\)

\(\Leftrightarrow a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{cd^2}{c^2+d^2}+d-\frac{da^2}{d^2+a^2}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}a^2+b^2\ge2\sqrt{a^2b^2}=2ab\\b^2+c^2\ge2\sqrt{b^2c^2}=2bc\\c^2+d^2\ge2\sqrt{c^2d^2}=2cd\\d^2+a^2\ge2\sqrt{d^2a^2}=2da\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{ab^2}{a^2+b^2}\le\frac{ab^2}{2ab}=\frac{b}{2}\\\frac{bc^2}{b^2+c^2}\le\frac{bc^2}{2bc}=\frac{c}{2}\\\frac{cd^2}{c^2+d^2}\le\frac{cd^2}{2cd}=\frac{d}{2}\\\frac{da^2}{d^2+a^2}\le\frac{da^2}{2da}=\frac{a}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a-\frac{ab^2}{a^2+b^2}\ge a-\frac{b}{2}\\b-\frac{bc^2}{b^2+c^2}\ge b-\frac{c}{2}\\c-\frac{cd^2}{c^2+d^2}\ge c-\frac{d}{2}\\d-\frac{da^2}{d^2+a^2}\ge d-\frac{a}{2}\end{matrix}\right.\)

\(\Rightarrow a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{cd^2}{c^2+d^2}+d-\frac{da^2}{d^2+a^2}\ge a+b+c+d-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}-\frac{d}{2}\)

\(\Rightarrow a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{cd^2}{c^2+d^2}+d-\frac{da^2}{d^2+a^2}\ge\frac{a+b+c+d}{2}\)

\(\Leftrightarrow\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\) ( đpcm )

Nguyễn Quang Định
12 tháng 2 2017 lúc 16:24

Cách của bạn Minh dài quá mình xin làm cách ngắn hơn:

Đầu tiên ta chứng minh bổ đề:

\(\frac{x^3}{x^2+y^2}\ge\frac{2x-y}{2}\)

\(\Leftrightarrow2x^3-\left(x^2+y^2\right)\left(2x-y\right)\ge0\)

\(\Leftrightarrow y\left(y-x\right)^2\ge0\)(đúng)

Từ đó ta có: \(\left\{\begin{matrix}\frac{a^3}{a^2+b^2}\ge\frac{2a-b}{2}\\\frac{b^3}{b^2+c^2}\ge\frac{2b-c}{2}\\\frac{c^3}{c^2+d^2}\ge\frac{2c-d}{2}\\\frac{d^3}{d^2+a^2}\ge\frac{2d-a}{2}\end{matrix}\right.\)

Cộng 4 cái trên vế theo vế ta được

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{2a-b}{2}+\frac{2b-c}{2}+\frac{2c-d}{2}+\frac{2d-a}{2}=\frac{a+b+c+d}{2}\)

Lê Minh Đức
Xem chi tiết
Lầy Văn Lội
10 tháng 7 2017 lúc 11:19

Áp dụng BĐT cauchy-schwarz :

\(VT=\frac{a^4}{ab+ac+ad}+\frac{b^4}{ab+bc+bd}+\frac{c^4}{cd+ac+bc}+\frac{d^4}{ad+bd+cd}\)

\(\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\)

Mà \(3\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+ac+ad+bc+bd+cd\right)\)( dễ dàng chứng minh nó bằng AM-GM)

nên \(VT\ge\frac{a^2+b^2+c^2+d^2}{3}\)

Áp dụng BĐT AM-GM: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd;d^2+a^2\ge2ad\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge ab+bc+cd+da=1\)

do đó \(VT\ge\frac{1}{3}\)

Dấu''='' xảy ra khi \(a=b=c=d=\frac{1}{2}\)

Phạm Tú Uyên
Xem chi tiết