Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Ngọc Trâm
Xem chi tiết
Long Vũ
6 tháng 1 2016 lúc 21:29

 B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)] 
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)] 
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1) 
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1 
=> B > A

Nguyễn Quang Thành
6 tháng 1 2016 lúc 21:30

 A=10^11-1/10^12-1 < B=10^10+1/10^11=1.

Hồ Yến
15 tháng 4 2021 lúc 20:42

B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)] 
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)] 
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1) 
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1 
=> B > A

Dương Gia Huy
Xem chi tiết
Akai Haruma
10 tháng 1 2022 lúc 21:56

Lời giải:

$B=\frac{10^{11}+10}{10^{12}+10}$

Đặt $10^{11}-1=a; 10^{12}-1=b$ thì $0< a< b$. Khi đó:

$A-B=\frac{a}{b}-\frac{a+11}{b+11}=\frac{11(a-b)}{b(b+11)}<0$

$\Rightarrow A< B$

 

C
5 tháng 3 lúc 22:14

Dễ vãi

Nguyễn Ngọc Mai Chi
Xem chi tiết
C
5 tháng 3 lúc 22:16

Hỏi 24.10.0.09.98.98888876676.978687877877.9866533145.6655543227.665433346.7646676:2

C
5 tháng 3 lúc 22:16

T

C
5 tháng 3 lúc 22:16

G

Hoàng Thu Hương
Xem chi tiết
Akai Haruma
24 tháng 3 2021 lúc 21:02

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

Thiên Di Mai
Xem chi tiết
Đinh Tuấn Việt
28 tháng 6 2015 lúc 22:43

Nếu có 1  phân số a/b < 1 thì a/b < a+n/b+n.

Tương tự ta có: A < (1011 -1)+11/(1012-1)+10

                        A < 1011+10/1012+10

                        A < 10(1010+1)/10(1011+1)

                        A < 10(1010+1)/10(1011+1)

                        A < 1010+1/1011+1

         Vậy  A < B

Nguyễn Đình Dũng
28 tháng 6 2015 lúc 22:42

 B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)] 
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)] 
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1) 
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1 
=> B > A

Đinh Tuấn Việt
28 tháng 6 2015 lúc 22:44

Nguyễn Đình Dũng lại copy à ? Đề yêu cầu so sánh A với B chứ có phải B với A đâu ?

Lê Anh Tú
Xem chi tiết
Nguyễn Anh Quân
21 tháng 1 2018 lúc 20:39

Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1 

Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)

10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1

Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)

Từ (1) và (2) => 10A < 10B

=> A < B

Tk mk nha

Admin (a@olm.vn)
21 tháng 1 2018 lúc 20:15

\(A=\frac{10^{11}-1}{10^{12}-1}\)

\(B=\frac{10^{10}+1}{10^{11}+1}\)

Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\)\(\frac{10^{10}+1}{10^{11}+1}< 1\)

\(\Rightarrow\)\(A,B< 1\)

Ta có:

\(10^{11}-1>10^{10}+1\)\(10^{12}-1>10^{11}+1\)

\(\Rightarrow A>B\)

Vậy A > B

Nguyễn Anh Quân
21 tháng 1 2018 lúc 20:16

Có : 10A = 10^12-10/10^12-1 = 1 - 9/10^12-1 < 1

10B = 10^11+10/10^11+1 = 1 + 9/10^11+1 > 1

=> 10A < 10B

=> A < B

Tk mk nha

lethanhtien
Xem chi tiết
Thieu Gia Ho Hoang
14 tháng 2 2016 lúc 9:35

bai toan nay kho

ichigo
Xem chi tiết
phan thi hong nhung
25 tháng 4 2018 lúc 22:01

mình nghĩ là b

Âm Thầm Trong Đêm
Xem chi tiết