Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thị Phương Thảo Trần
Xem chi tiết
yenhi chu
Xem chi tiết
Name No
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
6 tháng 7 2023 lúc 11:33

`@` `\text {Ans}`

`\downarrow`

`a,`

`P(x)+Q(x) = (3x^4-2x^3+3x+11)+(3x^2- x^3-5x+3x+4-x+2x^4)`

`= 3x^4-2x^3+3x+11+3x^2- x^3-5x+3x+4-x+2x^4`

`= (3x^4 + 2x^4) + (-2x^3 - x^3) + 3x^2 + (3x + 3x - 5x - x) + (11+4)`

`= 5x^4 - 3x^3 + 3x^2 + 15`

`b,`

` A(x) = P(x) + B(x)`

Thay `B(x) = 2x^3 - 3x^4 - 2`

`A(x) = P(x) + B (x)`

`=> A (x) = (2x^3 - 3x^4 - 2)+(3x^4 - 2x^3 + 3x + 11)`

`= 2x^3 - 3x^4 - 2+ 3x^4 - 2x^3 + 3x + 11`

`= (2x^3 - 2x^3) + (-3x^4 + 3x^4) + 3x + (-2+11) `

`= 3x + 9`

`A(x) = 3x+9 = 0`

`=> 3x = 0-9`

`=> 3x = -9`

`=> x = -9 \div 3`

`=> x = -3`

Vậy, nghiệm của đa thức là `x = -3.`

Xu Gucci
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 9 2021 lúc 0:03

Bài 2: 

Ta có: \(P=3x\left(\dfrac{2}{3}x^2-3x^4\right)+9x^2\left(x^3-1\right)+x^2\left(-2x+9\right)-12\)

\(=2x^3-9x^5+9x^5-9x^2-2x^3+9x^2-12\)

=-12

Nguyễn Lê Phước Thịnh
11 tháng 9 2021 lúc 0:05

Bài 1: 

a: Ta có: \(x\left(x^2+2\right)+2x\left(1-\dfrac{1}{2}x^2\right)=4\)

\(\Leftrightarrow x^3+2x+2x-x^3=4\)

hay x=1

b: Ta có: \(4x^2\left(x-1\right)+x\left(x^2+4x\right)=40\)

\(\Leftrightarrow4x^3-4x^2+x^3+4x^2=40\)

\(\Leftrightarrow5x^3=40\)

hay x=2

c: Ta có: \(3x\left(x-2\right)-3\left(x^2-3\right)=8\)

\(\Leftrightarrow3x^2-6x-3x^2+9=8\)

\(\Leftrightarrow-6x=-1\)

hay \(x=\dfrac{1}{6}\)

Nguyễn Thu Huệ
Xem chi tiết
Nguyen Dang Khoa
Xem chi tiết
Nguyễn Thành Trương
20 tháng 3 2020 lúc 14:54

Bài 1.

\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)

Khách vãng lai đã xóa
Nguyễn Thành Trương
20 tháng 3 2020 lúc 15:02

Bài 2.

\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)

ĐK: \(x\ne2\)

\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)

ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)

\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)

Khách vãng lai đã xóa
Nguyễn Thành Trương
20 tháng 3 2020 lúc 15:21

Bài 2.

\(a)5 + \dfrac{{96}}{{{x^2} - 16}} = \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{4 - x}}\)

ĐK: \(x\ne\pm4\)

\( Pt \Leftrightarrow \dfrac{{96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} - \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{x - 4}} = - 5\\ \Leftrightarrow \dfrac{{96 - \left( {2x - 1} \right)\left( {x - 4} \right) - \left( {3x - 1} \right)\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow \dfrac{{ - 5{x^2} - 2x + 96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow - 5{x^2} - 2x + 96 = - 5\left( {{x^2} - 16} \right)\\ \Leftrightarrow 96 - 2x = 80\\ \Leftrightarrow - 2x = - 16\\ \Leftrightarrow x = 8\left( {tm} \right)\\ b)\dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} = \dfrac{{9{x^2}}}{{9{x^2} - 4}} \)

ĐK: \(x \ne \dfrac{2}{3};x \ne -\dfrac{2}{3}\)

\( Pt \Leftrightarrow \dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} - \dfrac{{9{x^2}}}{{9{x^2} - 4}} = 0\\ \Leftrightarrow \dfrac{{{{\left( {2 + 3x} \right)}^2} - 6\left( {3x - 2} \right) - 9{x^2}}}{{\left( {3x - 2} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{16 - 6x}}{{\left( {3 - 2x} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow 16 - 6x = 0\\ \Leftrightarrow - 6x = - 16\\ \Leftrightarrow x = \dfrac{8}{3}\left( {tm} \right)\\ c)\dfrac{{x + 1}}{{{x^2} + x + 1}} - \dfrac{{x - 1}}{{{x^2} - x + 1}} = \dfrac{3}{{x\left( {{x^4} + {x^2} + 1} \right)}} \)

Ta có: \(x(x^4+x^2+1)=x[(x^2+1)^2-x^2]=x(x^2+x+1)(x^2-x+1)\)

Do \(\left\{ \begin{array}{l} {x^2} + x + 1 = {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\forall x\\ {x^2} - x + 1 = \left( {x - \dfrac{1}{2}} \right) + \dfrac{3}{4} > 0\forall x \end{array} \right.\) nên phương trình xác định với mọi $x \ne 0$

Quy đồng, rồi biến đổi phương trình về dạng \(2x=3 \Leftrightarrow x =\dfrac{3}{2} (tm)\)

Khách vãng lai đã xóa
Trang Kieu
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 20:40

1:

a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)

\(=4x^2-20x+25-4x^2-12x\)

=-32x+25

b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)

\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)

c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)

\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)

\(=\left(-3\right)^2+5\left(2x-3\right)\)

\(=9+10x-15=10x-6\)

2: 

a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)

\(=9x^2-12x+4-5x^2+20x+4x-4\)

\(=4x^2+12x\)

b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)

\(=27-x^3+x^3-9x^2+27x-27\)

\(=-9x^2+27x\)

c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)

\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)

\(=-5\left(x^2-16\right)=-5x^2+80\)

Đinh Trần Vũ Hưng
Xem chi tiết
Huỳnh Đức Lê
9 tháng 5 2015 lúc 12:56

a)A(x)+B(x)

=3x^4-2x^2+x-3+2x^4+3x^3-x^2-3x-2

=(3x^4+2x^4)+3x^3+(-2x^2-x^2)+(x-3x)+(-3-2)

=5x^4+3x^3-3x^2-2x-5

A(x)-B(x)

=(3x^4-2x^2+x-3)-(2x^4+3x^3-x^2-3x-2)

=3x^4-2x^2+x-3-2x^4-3x^3+x^2+3x+2

=(3x^4-2x^4)-3x^3+(-2x^2-x^2)+(x+3x)+(-3+2)

=x^4-3x^3-3x^2-4x-1

b)Thay x=-1 vào A(x)-B(x):

x^4-3x^3-3x^2-4x-1

=(-1)^4-[3(-1)]^3-[3(-1)]^2-4(-1)-1

=1+27-9+4-1=22

Vậy đa thức:x^4-3x^3-3x^2-4x-1 tại x=-1 có giá trị là 22

Ngânn Uyênnn
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2023 lúc 22:51

a: =>x^2+4x-4x+1=0

=>x^2+1=0

=>Loại

b: =>2x-6+4=2x+2

=>-2=2(loại)

c: =>2(x+3)-2x-1=1

=>6-1=1

=>5=1(loại)

d =>x+3=0

=>x=-3(loại)

e: =>x^2-3x^2+3x-3x-2=0

=>-2x^2-2=0

=>x^2+1=0

=>Loại