Tính tổng sau
A = 1/2 + 1/2^2 + 1/2^3 +.....+ 1/2^2015 + 1/2^2016
Tính tổng S= 2015 + 2015/1+2 + 2015/1+2+3 + ... + 2015/1+2+3+...+2016
viết lại đề cho rõ phân số đi bn
Tính tổng S=2015+2015/1+2+2015/1+2+3+..........+2015/1+2+3+........+2016
tính tổng sau: A=1/2+1/2^2+1/2^3 +...+1/2^2015+1/2^2016
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)16
2A=\(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2017}\)
2A-A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)-\(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\)
A=\(\frac{1}{2017}-\frac{1}{2}\)
A = \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
2A = \(1+\frac{1}{2}+...+\frac{1}{2^{2015}}\)
2A - A = \(\left(1+\frac{1}{2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)\)
A = \(1-\frac{1}{2^{2016}}\)
A=\(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+......+\frac{1}{2^{2016}}\)
\(\frac{1}{2}\)A=\(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+.....+\frac{1}{2^{2017}}\)
Trừ vế cho vế ta có :\(\frac{1}{2^1}A=\frac{1}{2^1}-\frac{1}{2^{2017}}\)
=>A=\(1-\frac{1}{2^{2016}}\)
A=1/2+1/2^2+1/2^3+...+1/2^2015+1/2^2016
tính tổng trên:
Có : 2A = 1 + 1/2 + 1/2^2 +.....+ 1/2^2015
A = 2A - A = (1+1/2+1/2^2+.....+1/2^2015)-(1/2+1/2^2+.....+1/2^2016)
= 1 - 1/2^2016
Tk mk nha
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2015}}-\frac{1}{2^{2016}}\)
\(A=1-\frac{1}{2^{2016}}\)
Tính tổng S = \(2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+...+2016}\)
Ta có :
\(S=2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+..+2016}\)
\(=2015.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+2016}\right)\)
\(=2015.\left(1+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2016+1\right).2016}{2}}\right)\)
\(=2015.\left(\frac{2}{2}+\frac{2}{2.\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{2016.\left(2016+1\right)}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2.\left(2+1\right)}+\frac{1}{3.\left(3+1\right)}+...+\frac{1}{2016.\left(2016+1\right)}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2017}\right)\)
\(=2015.2.\left(1-\frac{1}{2017}\right)\)
\(=2015.2.\frac{2016}{2017}\)
=\(\frac{2015.2.2016}{2017}\)
=\(\frac{8124480}{2017}\)
Vậy \(S=\frac{8124480}{2017}\)
Sai vì ngoài học tập ra còn cần phải siêng năng chăm chỉ trong các lĩnh vực khác nửa như giúp đỡ mọi người ,tham gia các hoạt động rèn luyện
Tính tổng S=1+2+2^2+2^3+.....+2^2015/1-2^2016
(1+2015/2016+2016/2017+1/2).(2015/2016+2016/2017+7/22)-(2015/2016+2016/2017+1/2).(2015/2016+2016/2017+7/22+1)
tính tổng trên
( trình bày cách tính
\(\frac{2.1+1}{\left(1+1\right)^2}+\frac{2.2+1}{\left(2^2+2\right)^2}+\frac{2.3+1}{\left(3^3+3\right)^2}+....+\frac{2.2015+1}{\left(2015^2+2015\right)^2}+\frac{2.1016+1}{\left(2016^2+2016\right)^2}\)
tính tổng . ai giúp vs
Tính S = 1/2(1+2) + 1/3(1+2+3)+...+ 1/2015(1+2+...+2014+2015) + 1/2016(1+2+...+2015+2016)