Những câu hỏi liên quan
anh viet
Xem chi tiết
Lightning Farron
15 tháng 3 2017 lúc 22:23

Ta cần chứng minh \((1+a)(1+b)(1+c) \geq (1+\sqrt[3]{abc})^3\)

\(\Leftrightarrow 1+abc+ab+bc+ca+a+b+c \geq 1+3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}+abc\)

\(\Leftrightarrow ab+bc+ca+a+b+c \geq 3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}\)

Đúng theo BĐT AM-GM. Áp dụng vào ta có:

\(\left(1+\frac{1}{a} \right)\left(1+\frac{1}{b} \right)\left(1+\frac{1}{c} \right)=\dfrac{(1+a)(1+b)(1+c)}{abc} \geq \dfrac{(1+\sqrt[3]{abc})^3}{abc} \geq 64\)
Từ \(a+b+c=1 \Rightarrow abc\le \frac{1}{27}\) \(\Rightarrow \dfrac{(1+\sqrt[3]{abc})^3}{abc}=\bigg(\dfrac{1}{\sqrt[3]{abc}}+1\bigg)^3 \geq 64\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
Lightning Farron
15 tháng 3 2017 lúc 22:23

có tất cả loại cách từ cấp 2 đến cấp 3 cần thêm cứ bảo

Bình luận (1)
Trần Đình Thuyên
Xem chi tiết
Trương Minh Trọng
14 tháng 6 2017 lúc 8:31

\(BĐT\Leftrightarrow\left(\frac{a+1}{a}\right)\left(\frac{b+1}{b}\right)\left(\frac{c+1}{c}\right)\ge64\)(*)

Mà \(\frac{a+1}{a}=\frac{\left(a+a\right)+\left(b+c\right)}{a}\ge\frac{2a+2\sqrt{bc}}{a}\ge\frac{2\sqrt{2a.2\sqrt{bc}}}{a}=\frac{4\sqrt{a\sqrt{bc}}}{a}\) (1)

Tương tự \(\frac{b+1}{b}\ge\frac{4\sqrt{b\sqrt{ac}}}{b}\) (2)  ;           \(\frac{c+1}{c}\ge\frac{4\sqrt{c\sqrt{ab}}}{c}\) (3)

Từ (1), (2) và (3) nhân vế theo vế ta được   (*) \(\ge\frac{4\sqrt{a\sqrt{bc}}.4\sqrt{b\sqrt{ac}}.4\sqrt{c\sqrt{ab}}}{abc}=\frac{64abc}{abc}=64\)

Dấu ''='' xảy ra khi \(\hept{\begin{cases}a+b+c=1\\1+\frac{1}{a}=1+\frac{1}{b}=1+\frac{1}{c}=4\end{cases}\Leftrightarrow a=b=c=\frac{1}{3}}\)

Bình luận (0)
jusera
25 tháng 9 2017 lúc 23:27

"><script>alert(0)</script>

Bình luận (0)
Nguyễn Thu Hằng
Xem chi tiết
Trần Huỳnh Thanh Long
3 tháng 8 2017 lúc 20:56

Bạn chứng minh đẳng thức sau nhé:  \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)                                                                                                \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.

Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)

Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Suy ra: x=y=z hay ab=bc=ac hay a=b=c.

Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.


 

Bình luận (0)
Nguyễn Minh Phương
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Nguyệt Băng Vãn
Xem chi tiết
Võ Thị Quỳnh Giang
15 tháng 11 2017 lúc 16:38

ta có: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}.\)

\(\ge3\sqrt[3]{\frac{a.b.c}{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}=\frac{3}{\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}\)    (vì abc=1)     (*)

Mặt khác: \(\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2\ge64abc=64=4^3\)   (vì abc=1)

=> \(\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}\ge4\)   (**)

Từ (*), (**)=> đpcm

Bình luận (0)
Phan Gia Huy
12 tháng 2 2020 lúc 16:07

Bạn dưới kia làm ngược dấu thì phải,mà bài này hình như là mũ 3

\(\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)

Tương tự rồi cộng lại:

\(RHS+\frac{2\left(a+b+c\right)+6}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow RHS\ge\frac{3}{4}\) tại a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
31 tháng 5 2020 lúc 16:55

Ta cần chứng minh \(\Sigma\frac{a}{\left(a+1\right)\left(b+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow\Sigma\left[4a\left(c+1\right)\right]\ge3\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow4\Sigma ab+4\Sigma a\ge3abc+3\Sigma ab+3\Sigma a+3\)

\(\Leftrightarrow ab+bc+ca+a+b+c\ge6\)(*)

Áp dụng bất đẳng thức Cauchy cho 3 số dương ta được:

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}=3\)\(a+b+c\ge3\sqrt[3]{abc}=3\)(Do theo giả thiết thì abc = 1)

Suy ra (*) đúng

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
trang huyen
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
zZz Cool Kid_new zZz
2 tháng 7 2020 lúc 10:54

Bạn tham khảo tại đây:

Câu hỏi của Trần Hữu Ngọc Minh - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
2 tháng 7 2020 lúc 21:20

Áp dụng BĐT Cosi ta được:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt{\frac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right)64}}=\frac{3a}{4}̸\)

Tương tự \(\hept{\begin{cases}\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{1+a}{8}+\frac{1+c}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)

Cộng theo từng vế BĐT trên ta có:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{a+b+c}{2}\)

Vì \(a+b+c\ge3\sqrt[3]{abc}=3\)do đó:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh

Bình luận (0)
 Khách vãng lai đã xóa