Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
anh viet

cho a,b,c thỏa mãn : a+b+c =1

Chứng minh : \(\left(1+\frac{1}{a}\right)\times\left(1+\frac{1}{b}\right)\times\left(1+\frac{1}{c}\right)\ge64\)

Lightning Farron
15 tháng 3 2017 lúc 22:23

Ta cần chứng minh \((1+a)(1+b)(1+c) \geq (1+\sqrt[3]{abc})^3\)

\(\Leftrightarrow 1+abc+ab+bc+ca+a+b+c \geq 1+3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}+abc\)

\(\Leftrightarrow ab+bc+ca+a+b+c \geq 3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}\)

Đúng theo BĐT AM-GM. Áp dụng vào ta có:

\(\left(1+\frac{1}{a} \right)\left(1+\frac{1}{b} \right)\left(1+\frac{1}{c} \right)=\dfrac{(1+a)(1+b)(1+c)}{abc} \geq \dfrac{(1+\sqrt[3]{abc})^3}{abc} \geq 64\)
Từ \(a+b+c=1 \Rightarrow abc\le \frac{1}{27}\) \(\Rightarrow \dfrac{(1+\sqrt[3]{abc})^3}{abc}=\bigg(\dfrac{1}{\sqrt[3]{abc}}+1\bigg)^3 \geq 64\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Lightning Farron
15 tháng 3 2017 lúc 22:23

có tất cả loại cách từ cấp 2 đến cấp 3 cần thêm cứ bảo


Các câu hỏi tương tự
Xem chi tiết
phan thị minh anh
Xem chi tiết
Nguyễn Yến Vy
Xem chi tiết
Kool Kool Tùng
Xem chi tiết
ʚĭɞ Thị Quyên ʚĭɞ
Xem chi tiết
Tâm Phạm
Xem chi tiết
phantuananh
Xem chi tiết
phan thị minh anh
Xem chi tiết
Nguyễn Minh Thu
Xem chi tiết