Bạn tham khảo ở đây : http://olm.vn/hoi-dap/question/633314.html
Bạn tham khảo ở đây : http://olm.vn/hoi-dap/question/633314.html
Cho 3 số thực dương a,b,c thỏa mãn : \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\) . CMR :
\(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
1/ Cho các số thực dương a,b với a khác b. Chứng minh đẳng thức sau:
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
2/ Cho hai số thực a,b sao cho \(\left|a\right|\ne\left|b\right|\) và ab \(\ne\) 0 thỏa mãn điều kiện:
\(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\). Tính giá trị của biểu thức \(P=\frac{a^3+2a^2b+3b^3}{2a^3+ab^2+b^3}\)
Cho a, b, b là ba số thực dương thỏa mãn : \(a+b+c+\sqrt{abc}=4\)
Tính giá trị của biểu thức:
\(A=\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
cho biểu thức \(P=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{\sqrt{a}}\right):\left(\frac{2a+\sqrt{a}-1}{1-a}+\frac{2a\sqrt{a}+a-\sqrt{a}}{1+a\sqrt{a}}\right)\)
a. rút gọn P KQ=\(\frac{1-\sqrt{a}+a}{\sqrt{a}}\)
b. tính P khi \(a=\frac{\sqrt{3+\sqrt{5}}\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13-\sqrt{48}}}}}+1\) KQ =7/3
c. tìm x để P>x
lm hooj t câu c vs câu a,b, t lm hết r
giả sử a;b;c;d;A;B;C;D là những số nguyên dương và \(\frac{a}{A}+\frac{b}{B}+\frac{c}{C}+\frac{d}{D}\). CMR:
\(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
GIÚP MK VỚI, MK CẦN GẤP LẮM!
Cho các số thực dương thoả mãn a+b+c+\(\sqrt{abc}\)=4. Tính giá trị biểu thức A=\(\sqrt[]{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-b\right)\left(4-a\right)}-\sqrt{abc}\)
chờ a,b,c là các số dương thỏa mãn a+b+c=abc
CMR: \(\sqrt{a+\frac{1}{a}}+\sqrt{b+\frac{1}{b}}+\sqrt{c+\frac{1}{c}}\ge\sqrt{a+b+c}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
Rút gọn biểu thức :
\(\frac{\sqrt{7-4\sqrt{3}}}{\sqrt{2-\sqrt{3}}}.\sqrt{2+\sqrt{3}}\)
\(\left[\left(a-b\right)\sqrt{\frac{a+b}{a-b}}+a-b\right]\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\)với a>b>0
Chứng minh rằng :
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)
1 Tính
a) \(\sqrt{0.9\times0.16\times0.4}\)
b) \(\sqrt{0,0016}\)
c)\(\frac{\sqrt{72}}{\sqrt{2}}\)
d) \(\frac{\sqrt{2}}{\sqrt{288}}\)
2 Rút gọn
a) \(\frac{2}{a}.\sqrt{\frac{16a^2}{9}}\left(a< 0\right)\)
b) \(\frac{3}{a-1}.\sqrt{\frac{4a^2-8a+4}{25}}\left(a>1\right)\)
c) \(\frac{\sqrt{243a}}{\sqrt{3a}}\left(a>0\right)\)
d) \(\frac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}\left(a\ne0,b\ne0\right)\)