cho A = 1+3+3^2 + 3^3+3^4 +...................+3^2000
Biết 2A=3^n-1
khi đó n=
cho A= 1+3+32+33+34+35+...32000. Biết 2A= 3n-1. Khi đó n=....
Ta có: 3A = 3 + 32 + 33 + ..... + 32001
3A - A = 32001 - 1
2A = 32001 - 1
Vậy n = 2001
\(A\cdot\left(3-1\right)=\left(3-1\right)\left(3^{2000}+3^{1999}+...+3^2+3+1\right).\)
\(2A=3^{2001}+3^{2000}+3^{1999}+...+3^2+3-\left(3^{2000}+3^{1999}+...+3+1\right)=3^{2001}-1\)
Theo để bài thì \(2A=3^n-1\). Vậy \(n=2001.\)
Ta có: 3A = 3 + 32 + 33 + ..... + 32001
3A - A = 32001 - 1
2A = 32001 - 1
Vậy n = 2001
Đáp số : n = 2001
cho a=1+3+3^2+3^3+...+3^2000 biết 2a=3^n-1 khi đó n=
a=1+3+3^2+....+3^2000
3a=3(1+3+3^2+....+3^2000)
3a=3+3^2+3^3+....+3^2001
3a-a=(3+3^2+3^3+....+3^2001)-(1+3+3^2+....+3^2000)
2a=3^2001-1(1)
Mà 2a=3^n-1.Từ (1)=>n=2001
Vậy n =2001
3a=3+32+33+.............+32001
3a-a=32001-1
2a=32001-1
=>n=2001
Cho a=1+3+3^2+3^3+.....+3^2000 Biết 2a=3^n-1 Khi đó n=
Cho A=1+3+3^2+3^3+...+3^2000 Biết 2A=3^n-1 Khi đó n=
3A=3+32+33+...........+32001
3A-A=(3+32+33+.............+32001)-(1+3+32+...........+32000)
3A-A=32001-1
=>2A=32001-3
=>n=2001
ta có 3a = 3 ( 1+ 3 + 3^2 + 3^3 +........+ 3^2000 ) = 3 + 3^2 + 3^3+.......+ 3^2001
ta cũng có 2a = 3a -a = 3 + 3^2 + 3^3 +.......+ 3^2001 - 1 + 3 + 3^2 + 3^3 +.......+ 3^2000
= 3^2001 - 1. vậy n= 2001
3A= 3+3^2 + 3^3 + .... + 3^2001
3A-A=3+3^2+3^3+....+3^2001-1-3-3^2-....-3^2000
2A=3^2001-1=3^n-1
=>n=2001
Cho A= 1+3^2+3^3+.......+3^2000. Biết 2A= 3^n -1 . Khi đó n bằng?
A=5+3^2+3^3+3^4+...+3^2018.Tìm n sao cho 2A-1=3^n+1
A=1+1+3+3^2+3^3+...+3^2018
A=1+(1+3+3^2+3^3+...+3^2018)
Đặt:
B=1+3+3^2+3^3+...+3^2018
3B=3.(1+3+3^2+3^3+...+3^2018)
3B=3+3^2+3^3+...+3^2018+3^2019
3B=1+3^2+3^3+...+3^2018+3^2019-1
3B=B+3^2019-1
3B-B=B+3^2019-1-B
2B=3^2019-1
=>2A=2B+1
=3^2019-1+1
=3^2019
2A-1
=3^2019-1
=3^n-1
3^n-1=3^2019-1
=>n=2019
Vậy n=2019
Chứng minh rằng :
1.(2n-3)2-9 chia hết cho 4 với mọi số nguyên n
2.a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
3.a4-2a3-a2+2a chia hết cho 24 với a là số nguyên
4.n3-n chia hết cho 6 với mọi số nguyên n
cho A = 5+3^2+3^3+3^4+.......+3^2018
tim n de 2A-1=3^n
Ta có : A = 5 + 32 + 33 + ... + 32018
<=> A = 1 + 1 + 3 + 32 + 33 + ... + 32018
=> 3A = 3 + 3 + 32 + 33 + 34 + ... + 32019
Lấy 3A trừ A ta có :
3A - A = (3 + 3 + 32 + 33 + 34 + ... + 32018 + 32019 ) - (1 + 1 + 3 + 32 + 33 + ... + 32018)
2A = 32019 + 3 - 2
2A = 32019 + 1
2A - 1 = 32019
<=> 3n = 32019
=> n = 2019
Vậy n = 2019
bài 5:
a, cho S = 1 +3^2+3^3+...+ 3^98 +3^99. tìm chữ số tận cùng của S
b, cho A = 5+3^2 +3^3+3^4+...+3^2018. tìm số tự nhiên n biết 2A -1=3^n
tui làm b nha do a không biết làm
A=5+32+33+...+32018
3A=15+33+34+...+32019
3A-A=(15+33+34+...+32019)-(5+32+33+...+32018)
2A=32019+15-(5+32)
2A=32019+15-14
2A=32019+1
2A-1=32019+1-1
2A-1=32019
vậy n = 2019
Cho A= 1+3+32+33+…+32000 .Biết 2A=3n-1.Khi đó n = ???????????????????????
GIÚP MÌNH NHA !!!!!!!!!!!!!!!!!!!!!!
3A-A=3(1+3+32+33+…+32000)-(1+3+32+33+…+32000)
2A=3+32+33+…+32001-1-3-32-33-…-32000
2A=32001-1=3n-1<=>32001=3n
=>n=2001