Cho a, b thoả mãn \(\frac{a^2+b^2}{a-2b}\)=2
Tìm Max P=8a+4b
Cho a,b lớn hơn 0 thoả mãn cos(2-ab)- cos(a+b)= a+b +ab -2
Tìm GTNN của P = a +2b
\(cos\left(2-ab\right)-cos\left(a+b\right)=a+b+ab-2\)
\(\Leftrightarrow cos\left(2-ab\right)+2-ab=cos\left(a+b\right)+a+b\)
Xét hàm \(f\left(x\right)=cosx+x\)
\(f'\left(x\right)=-sinx+1\ge0;\forall x\Rightarrow f\left(x\right)\) đồng biến trên R
\(\Rightarrow2-ab=a+b\)
\(\Rightarrow2-a=b\left(a+1\right)\Rightarrow b=\dfrac{2-a}{a+1}=\dfrac{3}{a+1}-1\)
\(\Rightarrow P=a+\dfrac{6}{a+1}-2=a+1+\dfrac{6}{a+1}-3\ge2\sqrt{\dfrac{6\left(a+1\right)}{a+1}}-3=2\sqrt{6}-3\)
cho a,b thoả mãn a^3 + 2b^2 -4b + 3 = 0 và a^2 + a^2b^2 - 2b = 0 tính a^2 + b^2
cho a,b thỏa mãn \(\frac{a^2+b^2}{a-2b}=2\)
tìm giá trị lớn nhất của biểu thức P = 8a+4b
Cho 2 số a,b thỏa mãn đẳng thức \(\frac{a^2+b^2}{a-2b}=2\).Giá trị lớn nhất của biểu thức P=8a+4b.
Từ \(\frac{a^2+b^2}{a-2b}=2\Rightarrow a^2+b^2=2\left(a-2b\right)\)
\(\Leftrightarrow a^2+b^2=2a-4b\)
\(\Leftrightarrow a^2+b^2+4b=2a\)
\(\Leftrightarrow a.a+b.b+4b=2.a\)
\(\Leftrightarrow a.a+b\left(b+4\right)=2.a\)
\(\Leftrightarrow2.a-a.a=b\left(b+4\right)\)
\(\Leftrightarrow\frac{a}{b}=\frac{b+4}{2-a}\)
Mà muốn P lớn nhất thì a,b phải lớn nhất \(\Rightarrow a=b+4;b=2-a\)
\(\Leftrightarrow a+b=2\Leftrightarrow b+4+b=2\Leftrightarrow2b=-2\Rightarrow b=-1;a=3\)
\(\Rightarrow P=8a+4b=24-4=20\)
Cho \(\frac{a^2+b^2}{a-2b}=2\)
Tìm max \(P=8a+4b\)
Cho các số thực dương a,b thoả mãn: \(a^2+2b^2=1\)
Chứng minh: \(\frac{a}{b^2}+\frac{4b}{a^2+b^2}\ge3\sqrt{3}\)
Cho a,b là 2 số thực dương thoả mãn 9a^2+4b^2=9 Tìm min A = \(\left(1+a\right)\left(1+\frac{3}{2b}\right)+\left(1+\frac{2b}{3}\right)\left(1+\frac{1}{a}\right)\)
Cho a,b>0 thoả mãn: a+b+1=8ab
Tính max của \(\frac{a^2+b^2}{a^2b^2}\)
Cho hai số thỏa mãn đẳng thức \(\frac{a^2+b^2}{a-2b}=2\)
Giá trị lớn nhất của biểu thức \(P=8a+4b\)
Ta có: \(b=0,25P-2a\) thế ngược lên trên ta được
\(\frac{a^2+\left(0,25P-2a\right)^2}{a-2\left(0,25P-2a\right)}=2\)
\(\Leftrightarrow80a^2-a\left(16P+160\right)+P^2+16P=0\)
Để PT có nghiệm thì:
\(\Delta'\ge0\)
Làm tiếp nhé