Ix-1I+I3-xI =6/Iy+3I +3
Ix-7I+I3-xI=12/Iy+1I+3
\(\left|x-7\right|+\left|3-x\right|=\dfrac{12}{\left|y+1\right|+3}\)
Ta có: \(\left\{{}\begin{matrix}\left|x-7\right|+\left|3-x\right|\ge\left|x-7+3-x\right|=4\\\dfrac{12}{\left|y+1\right|+3}\le\dfrac{12}{3}=4\end{matrix}\right.\)
Mà theo đề bài: \(\left|x-7\right|+\left|3-x\right|=\dfrac{12}{\left|y+1\right|+3}\)
\(\Rightarrow\left|x-7\right|+\left|3-x\right|=\dfrac{12}{\left|y+1\right|+3}=4\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}3\le x\le7\\y=-1\end{matrix}\right.\)
Giải các pt sau:
a) I2x-5I = I3-8xI
b) I4x-3I = 5-2x
c) Ix+1I+Ix+2I = I4-xI+I5-xI
d) Ix-3I-2Ix-2I+3Ix-1I=0
Các bạn giúp mk với ạ:33
a: \(\Leftrightarrow\left[{}\begin{matrix}2x-5=3-8x\\2x-5=8x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}10x=8\\-6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
tim x,y biet Ix-1I+Ix-2I+Iy-3I+Ix-4I=3
ta có:
\(\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|x-4\right|\)
\(=\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|4-x\right|\)
\(\ge\left|x-1+4-x\right|+\left|x-2\right|+\left|y-3\right|\)
\(=3+\left|x-2\right|+\left|y-3\right|\)
\(\ge3\)
Dấu "=" xả ra khi \(\hept{\begin{cases}\left(x-1\right)\left(4-x\right)\ge0\\\left|x-2\right|=0\\\left|y-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le4\cdot\\x=2\left(TM\cdot\right)\\y=3\end{cases}}\)
Vậy \(x=2;y=3\)
(x-1) + (x-2) + (x-3) + (x-4) = 3
(x+x+x+x) - (1+2+3+4) = 3
X x 4 - 10 = 3
X x 4 = 3 + 10
X x 4 = 13
x = 13 : 4
x = \(\frac{13}{4}\)
bài 1 : Lập bảng xét dấu để bỏ giá trị tuyệt đối
a ) I3x-1I + Ix-1I = 4
b ) Ix-2I + Ix-3I + Ix-4I = 2
C ) IX+1I + Ix-2I + Ix-3I = 6
d ) 2 x Ix+2I + I4-xI = 11
Tìm cá số nguyên x, y biết
a) Ix + 3I + Iy - 1I = 0
b) Ix + 5I + Iy + 1I \(\le\)0
Bài giải
a, \(\left|x+3\right|+\left|y-1\right|=0\)
Mà \(\hept{\begin{cases}\left|x+3\right|\ge0\forall x\\\left|y-1\right|\ge0\forall x\end{cases}}\Rightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(\left(x\text{ ; }y\right)=\left(-3\text{ ; }1\right)\)
b, \(\left|x+5\right|+\left|y+1\right|\le0\)
Mà \(\hept{\begin{cases}\left|x+5\right|\ge0\forall x\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\text{ }\left|x+5\right|+\left|y+1\right|=0\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|x+5\right|=0\\\left|y+1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)
Vậy \(\left(x\text{ ; }y\right)=\left(-5\text{ ; }-1\right)\)
Tính x
a, I 3x-2I<4
b, I3-2xI<x+1
c, I3x-1I>5
d, I3x+1I>I x-2I
e, I x-1I> I x+2I -3
g, Ix-1I+Ix+5I>8
h, Ix-3I +Ix+1I<8
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2>-4\\3x-2< 4\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< 2\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x-1>5\\3x-1< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{4}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow\left[{}\begin{matrix}3x+1>x-2\\3x+1< -x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x>-3\\4x< 1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\)
Tìm x
a, 2 Ix-3I-5=3
b, 2 I2x+3I + I2x+3I=6
c, 3 Ix+1I^2 + Ix+1I^2=16
a ) 2|x - 3| - 5 = 3 <=> 2|x - 3| = 8 <=> |x - 3| = 4 => x - 3 = ± 4
TH1 : x - 3 = 4 => x = 7
TH2 : x - 3 = - 4 => x = - 1
Vậy x = { - 1; 7 }
b ) 2|2x + 3| + |2x + 3| = 6 <=> 3|2x + 3| = 6 => |2x + 3| = 2 => 2x + 3 = ± 2
=> x = { - 5/2 ; - 1/2 }
c ) 3|x + 1|2 + |x + 1|2 = 16
4|x + 1|2 = 16
=> |x + 1|2 = 4 = 22 ( ko xét TH |x + 1| = - 2 vì |x + 1| ≥ 0 )
=> |x + 1| = 2 => x + 1 = ± 2 => x = { - 3; 1 }
Tìm x
Ix-3I+I1-xI=x+5
Ix-4I+I3-xI=1-2x
Tìm : x;y;z biết:
Ix-1I+Iy-2I+Ĩ-3I=0
|x-1|+|y-2|+|z-3|=0
|x-1|+|y-2|+|z-3|=0
Vì\(\left|x-1\right|\ge0;\left|y-2\right|\ge0;\left|z-3\right|=0\) nên |x-1|+|y-2|+|z-3| \(\ge0\)nên để biểu thức =0
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\\z-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)
nhận xét ta thấy
/x-1/ >=0
/y-2/>=0
/z-3/>=0
vậy /x-1/+/y-2/+/z-3/ >=0
dấu bằng xảy ra khi và chỉ khi
x-1=0
y-2=0
z-3=0
=> x=1, y=2, z=3