tính nhanh
201.3+2/3.5+2/5.7+...+2/199.201
A = 1/1.3 +1/3.5 + 1/5.7 + ... +1/199.201
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{199.201}\).
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{199.201}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{199}-\frac{1}{201}\)
\(2A=\frac{1}{1}-\frac{1}{201}\)
\(2A=\frac{201-1}{201}\)
\(2A=\frac{200}{201}\)
\(A=\frac{200}{201}:2\)
\(A=\frac{200}{402}\)
G=7/.3+7/3.5+7/5.7+...+7/199.201
G=7/2.(2/1.3+2/3.5+2/5.7+...+2/199.201)
G=7/2.(1-1/3+1/3-1/5+1/5-1/7+.....+1/199.201
G=7/2.(1-1/201)
G=7/2.200/201
G=1400/402
G=700/201
\(G=\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{199.201}\)
\(G=7\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{199.200}\right)\)
\(G=\frac{7}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{199.201}\right)\)
\(G=\frac{7}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{199}-\frac{1}{201}\right)\)
\(G=\frac{7}{2}\left(1-\frac{1}{201}\right)\)
\(G=\frac{7}{2}.\frac{200}{201}\)
\(G=\frac{700}{201}\)
Mọi ngừi giúp em với !!!!
D= \(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{199.201}\)
\(D=\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{199.201}\)
\(D=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{199.201}\right)\)
\(D=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{199}-\frac{1}{201}\right)\)
\(D=\frac{3}{2}\left(1-\frac{1}{201}\right)\)
\(D=\frac{3}{2}.\frac{200}{201}\)
\(D=\frac{100}{67}\)
#)Giải :
\(D=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{199.201}\)
\(D=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{199.201}\right)\)
\(D=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{199}-\frac{1}{201}\right)\)
\(D=\frac{3}{2}\left(1-\frac{1}{201}\right)\)
\(D=\frac{3}{2}\times\frac{200}{201}\)
\(D=\frac{100}{67}\)
\(\frac{2}{3}D=\frac{2}{1\times3}+\cdot\cdot\cdot+\frac{2}{199\times201}\)
\(\frac{2}{3}D=1-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{199}-\frac{1}{201}\)
\(\frac{2}{3}D=1-\frac{1}{201}\)
\(\frac{2}{3}D=\frac{200}{201}\)
\(D=\frac{200}{201}:\frac{2}{3}=\frac{200\times3}{201\times2}=\frac{300}{201}\)
tính tổng :
a.2/1.3+2/3.5+2/5.7+....+2/99.101
b.5/1.3+5/3.5+5/5.7+....+5/99.101
a.2/1.3+2/3.5+2/5.7+................+2/99.101
1-1/3+1/3-1/5+1/5-1/7+....+1/99-1/101
1-1/101
100/101
b.5/1.3+5/3.5+5/5.7+............+5/99.101
5.2/1.3.2+5.2/3.5.2+5.2/5.7.2+........+5.2+99.101.2
5/2(2/1.3+2/3.5+2/5.7+........+2/99.101)
5/2(1-1/3+1/3-1/5+1/5-1/7+........+1/99-1/101)
5/2(1-1/101)
5/2.100/101
250/101
Tính Tổng
a) 2/1.3+2/3.5+2/5.7.... 2/99.101
b) 5/1.3+5/3.5+5/5.7+...+5/99.101
c) 4/2.4+4/4.6+4/6.8+...+4/2008.2010
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2
=(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2
=(1/2-1/2010).2
=1004/1005
Tính: 2/1.3+ 2/3.5+ 2/5.7+ ......... + 2/97.99
2/1.3 + 2/3.5 + 2/5.7 +...+ 2/97.99
=(1/1-1/3)+(1/3-1/5)+(1/5-1/7)+...+(1/97-1/99)
=1-1/99=98/99
Bài 1: Tính tổng
a, 2\1.3+2\3.5+2\5.7+.......+2\99.101
b, 5\1.3+5\3.5+5\5.7+......+5\99.101
Bài 2: CMR phân số 2n+1\3n+2 là phân số tối giản
Bài 1:
Ta có:
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b, Đặt \(A=\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
\(\Rightarrow\frac{2}{5}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
Từ (a) \(\Rightarrow\frac{2}{5}A=\frac{100}{101}\)
\(\Rightarrow A=\frac{100}{101}:\frac{2}{5}=\frac{100}{101}.\text{5/2}=\frac{250}{101}\)
Bài 2:
Đặt \(\left(2n+1;3n+2\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)
\(\Rightarrow\left(2n+1;3n+2\right)=1\)
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản
1. Giải
a, \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=2.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
b, \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(=5.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{5.100}{2.101}=\frac{500}{202}=\frac{250}{101}\)
2. Giải
Gọi ước chung lớn nhất của 2n + 1 và 3n + 2 là d (d thuộc N*)
=> 2n + 1 \(⋮\)d ; 3n + 2 \(⋮\)d
=> 3(2n + 1) \(⋮\)d ; 2(3n + 2) \(⋮\)d
=> 6n + 3 \(⋮\)d , 6n + 4 \(⋮\)d
=> (6n + 4) - (6n + 3) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản
Tính : A=2/1.3+2/3.5+2/5.7+...+2/99.101 =?
A=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/100
A=1-1/100
A=99/100
\(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)\(=\left(1-\frac{1}{101}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)=\left(\frac{101}{101}-\frac{1}{101}\right)+0+0+...+0=\frac{100}{101}\)Chúc bạn học tốt!^_^
tính 2^2/3.5 +3^2/5.7 +...+49^2/97.99