giai hpt\(\hept{\begin{cases}x^2+y^2+2x+2y=11\\xy\left(x+2\right)\left(y+2\right)=24\end{cases}}\)
giải hpt
a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\\x^2+5x+y=16\end{cases}}\)
b)\(\hept{\begin{cases}2x-2y-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)
a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)
từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được:
\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)
nhân ra giải phương trình rồi tìm x, tự lm nhé.
b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)
Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé
ai giup minh giai cai bai nay voi
\(\hept{\begin{cases}x^2+y^2+2x+2y=11\\xy\left(x+2\right)\left(y+2\right)=24\end{cases}}\)
voi bai \(\hept{\begin{cases}x+y+xy=1\\x+z+xz=3\\z+y+yz=7\end{cases}}\)
\(pt\left(1\right)\Leftrightarrow x\left(x+2\right)+y\left(y+2\right)=11\)
Đặt a=x(x+2); b=y(y+2) thì: \(hpt\Leftrightarrow\hept{\begin{cases}a+b=11\\ab=24\end{cases}}\)
Khi đó a,b là 2 nghiệm của pt ẩn m:
\(m^2-11m+24=0\Leftrightarrow\left(m-8\right)\left(m-3\right)=0\Rightarrow\hept{\begin{cases}m=8\\m=3\end{cases}}\)
Tới đây bn tự làm tiếp.
Giai các hệ phương trình sau
a,\(\hept{\begin{cases}3x^2+xy-4x+2y=2\\x\left(x+1\right)+y\left(y+1\right)=4\end{cases}}\) b,\(\hept{\begin{cases}x^2+y^2=2x^2y^2\\\left(x+y\right)\left(1+xy\right)=4x^2y^2\end{cases}}\)
c, \(\hept{\begin{cases}x^2+1+xy+y^2=4y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)
b) HPT \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=2xy\left(xy+1\right)\left(1\right)\\\left(x+y\right)\left(xy+1\right)=\left(2xy\right)^2\left(2\right)\end{cases}}\)
Công theo vế 2 pt trên cho nhau: \(\left(x+y\right)^2+\left(x+y\right)\left(xy+1\right)=2xy\left(xy+1\right)+\left(2xy\right)^2\)
\(\Leftrightarrow\left(x+y-2xy\right)\left(x+y+2xy\right)+\left(xy+1\right)\left(x+y-2xy\right)=0\)
\(\Leftrightarrow\left(x+y-2xy\right)\left(x+y+3xy+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=2xy\\x+y+3xy+1=0\end{cases}}\)
* Với x + y = 2xy.
Thay vào (1) ta có: \(\left(2xy\right)^2=2xy\left(xy+1\right)\)
\(\Leftrightarrow2xy\left(xy-1\right)=0\Rightarrow\orbr{\begin{cases}xy=0\\xy=1\end{cases}}\)
+) Với xy = 0 suy ra x +y = 0 => x =y = 0
+) Với xy = 1 => x +y = 2xy = 2
Theo hệ thức Viet đảo: x, y là hai nghiệm của hệ:
\(t^2-2t+1=0\Leftrightarrow t=1\Rightarrow x=y=1\)
* Với x +y + 3xy + 1 = 0.
\(\Rightarrow x+y=-\left(3xy+1\right)\)
Thay vào (1) ta thu được: \(\left(3xy+1\right)^2=2xy\left(xy+1\right)\)
\(\Leftrightarrow7x^2y^2+4xy+1=0\) . Ta có: \(7x^2y^2+4xy+1=7t^2+4t+1=7\left(t+\frac{2}{7}\right)^2+\frac{3}{7}>0\forall t=xy\)
Do đó với x +y + 3xy + 1 = 0 thì pt vô nghiệm.
=> (x;y) = {(0;0) , (1;1)}
P/s: Em mới học giải hệ thôi nên ko chắc về cách giải lẫn cách trình bày đâu nha!
c) HPT \(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)+y\left(x+y-2\right)=2y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)
Với y = 0 thay vào pt đầu suy ra \(x^2+1=0\) (vô nghiệm)
Xét y khác 0 khi đó HPT \(\Leftrightarrow\hept{\begin{cases}\frac{\left(x^2+1\right)}{y}+\left(x+y-2\right)=2\\\frac{\left(x^2+1\right)}{y}\left(x+y-2\right)=1\end{cases}}\)
Đặt \(\frac{x^2+1}{y}=a;x+y-2=b\)
Ta có: \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}}\) theo hệ thức Viet đảo: a, b là hai nghiệm của pt \(t^2-2t+1=0\Rightarrow t=1\Rightarrow a=b=1\)
Do b = 1 suy ra \(x+y-2=1\Leftrightarrow x=3-y\).
Anh thử giải nốt xem sao?Em ko chắc đâu nhá!
Cho hệ phương trình:
\(\hept{\begin{cases}x^2+y^2+2x+2y=11\\xy\left(x+2\right)\left(y+2\right)=m\end{cases}}\)
a) Giải hpt khi m=24
b) Tìm m để hpt có nghiệm
Giải các HPT sau:
1) \(\hept{\begin{cases}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
2) \(\hept{\begin{cases}x^2+1+y\left(y+x\right)=4y\\\left(x^2+1\right)\left(y+x-2\right)=y\end{cases}}\)
3) \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\\x^2+y^2+xy-3x-4y+4=0\end{cases}}\)
p/s: cần được giúp đỡ. Rất GẤP!!! các bn ko cần phải làm hết đâu nha.
3/ \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\left(1\right)\\x^2+y^2+xy-3x-4y+4=0\left(2\right)\end{cases}}\)
Xét phương trình (2) ta có:
\(x^2+\left(y-3\right)x+y^2-4y+4=0\)
Để PT theo nghiệm x có nghiệm thì
\(\Delta=\left(y-3\right)^2-4.\left(y^2-4y+4\right)\ge0\)
\(\Leftrightarrow-3y^2+10y-7\ge0\)
\(\Leftrightarrow1\le y\le\frac{7}{3}\)
\(\Leftrightarrow1\le y^2\le\frac{49}{9}\)
Tương tự ta có:
\(0\le x\le\frac{4}{3}\)
\(\Leftrightarrow0\le x^4\le\frac{256}{81}\)
Từ đây ta có: \(x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)
Thế ngược lại hệ không thỏa mãn. Vậy hệ vô nghiệm
1/ Điều kiện \(\hept{\begin{cases}x\ge1\\y\ge0\end{cases}}\)\(\hept{\begin{cases}xy+x+y-x^2+2y^2=0\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
Xét phương trình đầu ta có
\(xy+x+y-x^2+2y^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(2y-x+1\right)=0\)
\(\Rightarrow x=1+2y\)
Thế vào pt dưới ta được
\(\sqrt{2y}\left(y+1\right)=2y+2\)
\(\Leftrightarrow\left(y+1\right)\left(\sqrt{2y}-2\right)=0\)
Tới đây tự làm tiếp nhé
2/ Ta lấy PT đầu - phương trình sau ta được
x2 + 1 + y(y + x) - 3y - (x2 + 1)(y + x - 2) = 0
<=> (y + x - 3)(y - x2 - 1) = 0
Tới đây làm tiếp nhé
Giai hệ:\(\hept{\begin{cases}xy+x-2=0\\x^2\left(2x-y\right)+y^2=x\left(2y-x\right)+y\end{cases}}\)
Ta có: \(\hept{\begin{cases}xy+x-2=0\\x^2\left(2x-y\right)+y^2=x\left(2y-x\right)+y\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y+1=\frac{2}{x}\\2x^3-x^2y+y^2-2xy+x^2-y=0\end{cases}}\Rightarrow\hept{\begin{cases}y+1=\frac{2}{x}\\\left(2x^3-2xy\right)-\left(x^2y-y^2\right)+\left(x^2-y\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y+1=\frac{2}{x}\\2x\left(x^2-y\right)-y\left(x^2-y\right)+\left(x^2-y\right)=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}y+1=\frac{2}{x}\left(1\right)\\\left(2x-y+1\right)\left(x^2-y\right)=0\left(2\right)\end{cases}}\).
Có (2x-y+1)(x\(^2\)-y)=0
\(\Rightarrow2x-y+1=0\)hoặc \(x^2-y=0\)
\(\Rightarrow y=2x+1\)hoặc \(x^2=y\)
Xét y = 2x + 1 từ (1) \(\Rightarrow2x+1+1=\frac{2}{x}\)
\(\Rightarrow2x+2=\frac{2}{x}\)\(\Rightarrow2x^2+2x-2=0\)\(\Rightarrow2\left(x^2+x-1\right)=0\)
\(\Rightarrow x^2+x-1=0\Rightarrow x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{5}{4}=0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\)
\(\Rightarrow x+\frac{1}{2}=\frac{\sqrt{5}}{2}\)hoặc \(x+\frac{1}{2}=\frac{-\sqrt{5}}{2}\)
\(\Rightarrow x=\frac{\sqrt{5}-1}{2}\)hoặc \(x=\frac{-\sqrt{5}-1}{2}\)
\(\Rightarrow y+1=\frac{2}{\frac{\sqrt{5}-1}{2}}\)hoặc \(y+1=\frac{2}{\frac{-\sqrt{5}-1}{2}}\)
\(\Rightarrow y=\sqrt{5}\)hoặc \(y=-\sqrt{5}\).
Xét \(x^2=y\)từ (1), ta có: \(x^2+1=\frac{2}{x}\)
_____________________
Chúc bn hc tốt!
\(PT\Leftrightarrow\hept{\begin{cases}y=\frac{2}{x+1}\\2x^3-x^2y+x^2+y^2-2xy-y=0\end{cases}}\)
Thay y theo x vào phương trình 2 ta được:
\(2x^3-x^3.\frac{2}{x+1}+x^2+\frac{4}{\left(x+1\right)^2}-2x.\frac{2}{x+1}-\frac{2}{x+1}=0\)
\(\Leftrightarrow2x^3\left(x+1\right)^2-2x^3\left(x+1\right)+x^2\left(x+1\right)+4-4x\left(x+1\right)-2\left(x+1\right)=0\)
\(\Leftrightarrow2x^5+5x^4+2x^3-5x^2-6x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^2+3x-1\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x=1;x=\frac{1}{2}\left(-3\pm\sqrt{17}\right)\)
Đến đây dễ rồi..
\(1,\hept{\begin{cases}\sqrt{x}+\sqrt{y}=3\\\sqrt{x+5}+\sqrt{y+3}=5\end{cases}}\)
\(2,\hept{\begin{cases}x\left(x+y+1\right)-3=0\\\left(x+y\right)^2-\frac{5}{x^2}+1=0\end{cases}}\)
\(3,\hept{\begin{cases}xy+x+y=x^2+2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
\(4,\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
\(5,\hept{\begin{cases}2y\left(x^2-y^2\right)=3x\\x\left(x^2+y^2\right)=10y\end{cases}}\)
giải hệ phương trình:
1) \(\hept{\begin{cases}2\left(x+y\right)+3\left(x+y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{cases}}\)
2)\(\hept{\begin{cases}\left(2x-3\right)\left(2y+4\right)=4x\left(y-3\right)+54\\\left(x+1\right)\left(3y-3\right)=3y\left(x+1\right)-12_{ }\end{cases}}\)
3) \(\hept{\begin{cases}\frac{2y-5x}{3}+5=\frac{y+27}{4}-2x\\\frac{x+1}{3}+y=\frac{6y-5x}{7}\end{cases}}\)
4)\(\hept{\begin{cases}\frac{1}{2}\left(x+2\right)\left(y+3\right)-\frac{1}{2}xy=50\\\frac{1}{2}xy-\frac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{cases}}\)
5)\(\hept{\begin{cases}\left(x+20\right)\left(y-1\right)=xy\\\left(x-10\right)\left(y+1\right)=xy\end{cases}}\)
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
2) Từ hệ ta có \(\hept{\begin{cases}20x-6y=66\\-3x=-9\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
giải hpt ( đặt ẩn phụ ):
\(\hept{\begin{cases}\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\\2x^2y+xy^2-4xy=2x-y\end{cases}}\)