tìm nghiệm của phương trình:xy+x-2y=3
Giải hệ phương trình:
xy(4xy+y+4)=y^2(2y+5)−1
2xy(x−2y)+x−14y=0
giải hệ phương trình:
xy(4xy+y+4)=y^2(2y+5)−1
2xy(x−2y)+x−14y=0
giải hệ phương trình:xy=x+2y+3 và 4x3-y3=24x2-45x+15y+41
Tìm nghiệm nguyên của phương trình: \(x^2+x-1=3^{2y+1}\)
Tìm nghiệm nguyên của phương trình : xy-x+2y=3
\(xy-x+2y=3\)
\(\Leftrightarrow xy-x+2y-2=1\)
\(\Leftrightarrow x\left(y-1\right)+2\left(y-1\right)=1\)
\(\Leftrightarrow\left(x+2\right)\left(y-1\right)=1\)
\(\Rightarrow x+2=1\) thì \(y-1=1\) \(\Rightarrow x=-1\) thì \(y=2\)
\(\Rightarrow x+2=-1\) thì \(y-1=-1\) \(\Rightarrow x=-3\) thì \(y=0\)
Vậy ....................
Đề bài: \(xy-x+2y=3\)
\(\Leftrightarrow\left(x+2\right)y=x+3\)
\(\Leftrightarrow x\left(y-1\right)+2y=3\)
\(\Leftrightarrow xy-x+2y-3=0\)
\(\Rightarrow x+2\ne0\)\(,\)\(y=\frac{x+3}{x+2}\)
\(\Rightarrow x=-3\)\(,\)\(y=0\)
\(x=-1\)\(,\)\(y=2\)
Tìm nghiệm nguyên của phương trình : 4xyz=x+2y+3z+3
Tìm nghiệm nguyên của phương trình sau
x^2y+x^2=x^3-y+2x+7
Ta có phương trình :
\(x^2y+x^2=x^3-y+2x+7\)
\(\Leftrightarrow x^2y+y=x^3-x^2+2x+7\)
\(\Leftrightarrow y.\left(x^2+1\right)=x^3-x^2+2x+7\)
\(\Leftrightarrow y=\frac{x^3-x^2+2x+7}{x^2+1}\)
Do \(y\inℤ\rightarrow\frac{x^3-x^2+2x+7}{x^2+1}\inℤ\). Lại có \(x\inℤ\Rightarrow\hept{\begin{cases}x^3-x^2+2x+7\inℤ\\x^2+1\inℤ\end{cases}}\)
\(\Rightarrow x^3-x^2+2x+7⋮x^2+1\)
\(\Leftrightarrow x.\left(x^2+1\right)-\left(x^2+1\right)+x+8⋮x^2+1\)
\(\Leftrightarrow x+8⋮x^2+1\)
\(\Rightarrow\left(x+8\right)\left(x-8\right)⋮x^2+1\)
\(\Leftrightarrow x^2+1-65⋮x^2+1\)
\(\Leftrightarrow65⋮x^2+1\)\(\Leftrightarrow x^2+1\inƯ\left(65\right)\). Mà : \(x^2+1\ge1\forall x\)
\(\Rightarrow x^2+1\in\left\{1,5,13,65\right\}\)
\(\Leftrightarrow x^2\in\left\{0,4,12,64\right\}\). \(x^2\) là số chính phương với \(x\inℤ\)
\(\Rightarrow x^2\in\left\{0,4,64\right\}\Rightarrow x\in\left\{0,2,-2,8,-8\right\}\)
+) Với \(x=0\) thì \(y=7\) ( Thỏa mãn )
+) Với \(x=2\) thì \(y=3\) ( Thỏa mãn )
+) Với \(x=-2\) thì \(y=-\frac{9}{5}\) ( Loại )
+) Với \(x=8\) thì \(y=\frac{471}{65}\) ( Loại )
+) Với \(x=-8\) thì \(y=-9\) ( Thỏa mãn )
Vậy phương trình đã cho có nghiệm \(\left(x,y\right)\in\left\{\left(-8,-9\right);\left(0,7\right);\left(2,3\right)\right\}\)
Tìm nghiệm nguyên của phương trình:
6x 3 –xy(11x+3y) +2y 3 =6
(x-2y)(2x+y)(3x- y) =6
bn ơi bn lm đc bài này ko giúp mik vs
tìm x;y trong phương trình nghiệm nguyên sau:
a)x^2+y^2-2.(3x-5y)=11 b)x^2+4y^2=21+6x
tìm nghiệm nguyên của phương trình 2x^3 -x^2y + 3x^2 +2x -y=2
2x3-x2y+3x2+2x-y=2
(2x3+2x)-(x2y+y)+(3x2+3)=5
2x(x2+1)-y(x2+1)+3(x2+1)=5
(x2+1)(2x-y+3)=5
Mà x2>=0 => x2+1>0
=> (x2+1)(2x-y+3)=5=1.5=5.1
•x2+1=1 và 2x-y+3=5 => x=0; y=-2
•x2+1=5 và 2x-y+3=1=> x=2;y=6 hoặc x=-2; y=-2
Vậy (x;y) là (0;-2);(2;6);(-2;-2)