tìm x,y,z\(\in Z\)
\(6x^2+7y^2=74\)
Tim x,y \(\in Z\) thoa man
\(6x^2+7y^2=74\)
Vì x nguyên nên \(-3\le x\le3\)
Nếu x>3 thì \(6x^2+7y^2>74\)\(\forall x;y\in Z\)
TH1: \(x=\pm3\Leftrightarrow54+7y^2=74\Leftrightarrow7y^2=20\Leftrightarrow y^2=\dfrac{20}{7}\) loại vì y nguyên => y2 cũng nguyên
TH2: \(x=\pm2\Leftrightarrow24+7y^2=74\Leftrightarrow7y^2=50\Leftrightarrow y^2=\frac{50}{7}\) loại
TH3: \(x=\pm1\Leftrightarrow6+7y^2=74\Leftrightarrow7y^2=68\Leftrightarrow y^2=\frac{68}{7}\) loại
TH4: x=0 <=> 7y2=74 <=> \(y^2=\frac{74}{7}\) loại
Vậy không có các số nguyên x;y thỏa mãn đề bài
Bài 1 : Tìm x,y,z biết :
a) 2x = 3y ; 5y = 7z và 3x - 7y + 5z = -30
b) 3x =5y ; 7y = 2z và x + y + z = 74
c) x : z = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\) ; z : y = 1 : \(\dfrac{4}{7}\) và y + z = 66
d) x : y : z = 3 : 4 : 5 và \(2x^2\) + \(2y^2\) - \(3z^2\) = -100
e) \(x:y:z\) = 2 : 5 : 6 và \(2x^2\) + \(4y^2\) - \(4z^2\) = -324
f) \(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{3}\) = \(\dfrac{z-3}{4}\) và \(x-2y+3z=14\)
g)\(\dfrac{x-1}{2}\) = \(\dfrac{y+3}{4}\) =\(\dfrac{z-5}{6}\) và \(5z-3x-4y=50\)
h) \(\dfrac{x}{2}=\dfrac{y}{7}\) và \(xy=56\)
i)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{xy}{200}\)
k) \(\dfrac{x-5}{6}=\dfrac{x+5}{18}\)
l) \(\dfrac{2x-11}{12}=\dfrac{x+5}{20}\)
Tìm các số x, y, z biết:
a) x : 105 = y : 90, y : 24 = z ; 21 và x+y+z = 292
b) 3x = 5y, 7y = 2z và x + y + z = 74
c) x : y : z = 4 : 5 : 6 và x2 - 2y2 + z = 8
tìm x;y;z
3x=5y và 7y=2z;x+y+z=74
Ta có : 3x = 5y
=> x/5 = y/3 (1)
7y = 2z
=> y/2 = z/7 (2)
Từ (1) và (2) :
=> x/10 = y/6 = x/21
Áp dụng t/x DTSBN
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{x+y+x}{10+6+21}=\frac{74}{37}=2\)
=> x = 20
y = 12
z = 42
Ta có:
\(3x=5y;7y=2z\) và \(x+y+z=74\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3};\frac{y}{2}=\frac{z}{7}\Leftrightarrow\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và \(x+y+z=74\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{x+y+z}{10+6+21}=\frac{74}{37}=2\)
\(\hept{\begin{cases}\frac{x}{10}=2\Rightarrow x=2.10=20\\\frac{y}{6}=2\Rightarrow y=2.6=12\\\frac{z}{21}=2\Rightarrow z=2.21=42\end{cases}}\)
Vậy \(x=20;y=12;z=42\)
Tìm x ; y \(\in\) Z :
6x2 +5y2 = 74
Cho 2x-3y+z=42. Tìm x,y,z biết
a) x+1/3=y-2/4=z-1/13
b) x/-3=y/5;y/2=z/7
c)6x=4y=z
d)x=-2y;7y=2z
Cho 2x-3y+z=42.Tìm x,y,z biết:
a,x/-3=y/5;y/2=z/7
b,6x=4y=z
c,x=-2y;7y=2z
Ai làm đúng và đủ mình sẽ tick cho người đó nha.
\(\dfrac{x}{-3}=\dfrac{y}{5}\)⇒\(\dfrac{x}{-6}=\dfrac{y}{10}\)
\(\dfrac{y}{2}=\dfrac{z}{7}\)⇒\(\dfrac{y}{10}=\dfrac{z}{35}\)
⇒\(\dfrac{x}{-6}=\dfrac{y}{10}=\dfrac{z}{35}\)
⇒\(\dfrac{2x}{-12}=\dfrac{3y}{30}=\dfrac{z}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{-12}=\dfrac{3y}{30}=\dfrac{z}{35}=\dfrac{2x-3y+z}{-12-30+35}=\dfrac{42}{-7}=-6\)
⇒\(\left\{{}\begin{matrix}x=-6.-6=36\\y=-6.10=-60\\z=-6.35=-210\end{matrix}\right.\)
\(a,\dfrac{x}{-3}=\dfrac{y}{5}\Rightarrow\dfrac{x}{-6}=\dfrac{y}{10};\dfrac{y}{2}=\dfrac{z}{7}\Rightarrow\dfrac{y}{10}=\dfrac{z}{35}\\ \Rightarrow\dfrac{x}{-6}=\dfrac{y}{10}=\dfrac{z}{35}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{-6}=\dfrac{y}{10}=\dfrac{z}{35}=\dfrac{2x}{-12}=\dfrac{3y}{30}=\dfrac{2x-3y+z}{-12-30+35}=\dfrac{42}{-7}=-6\\ \Rightarrow\left\{{}\begin{matrix}x=36\\y=-60\\z=-210\end{matrix}\right.\)
\(b,6x=4y=z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{12}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{12}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y+z}{4-9+12}=\dfrac{42}{7}=6\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=18\\z=72\end{matrix}\right.\)
\(c,x=-2y\Rightarrow\dfrac{x}{-2}=y\Rightarrow\dfrac{x}{-4}=\dfrac{y}{2}\\ 7y=2z\Rightarrow\dfrac{y}{2}=\dfrac{z}{7}\\ \Rightarrow\dfrac{x}{-4}=\dfrac{y}{2}=\dfrac{z}{7}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{-4}=\dfrac{y}{2}=\dfrac{z}{7}=\dfrac{2x}{-8}=\dfrac{3y}{6}=\dfrac{2x-3y+z}{-8+6+7}=\dfrac{42}{5}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{168}{5}\\y=\dfrac{84}{5}\\z=\dfrac{294}{5}\end{matrix}\right.\)
Cho 2x - 3y + z =42.Tìm x,y,z biết:
a)6x = 4y = z = k
b)x= -2y;7y=2z
c)x+1/3 = y-2/4 = z-1/13
câu a) không có k nha! Mik ghi nhầm
Tìm n \(\in\)Z để
( 6n - 1 ) chia hết cho ( 4n + 1 )
Tìm các số nguyên tố x, y thỏa mãn :
4xy - 3.( x + y ) = 59
Tìm x , y \(\in\)Z, biết
6x2 + 5y2 = 74