Chứng minh với a,b thuộc Z: a+b chia hết cho 3 thì a^3+b^3 chia hết cho 3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1: Chứng minh rằng: Nếu 6x+ 11y chia hết cho 31 thì x + 7y chia hết cho 31; x , y thuộc Z
Bài 2: Cho a, b thuộc Z ( a khác 0, b khác 0)
Chứng minh rằng: Nếu a chia hết cho b và b chia hết cho a thì a = b, a = -b
Bài 3: Tìm n thuộc Z sao cho:
a, n2 + 3n - 13 chia hết cho n + 3
d, n2 + 3 chia hết cho n - 1
HELP ME............................
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
Chúng minh với a,b thuộc Z : nếu a+b chia hết cho 3 thì a^3+b^3 chia hết cho 3
Ta có: a^3+b^3=(a+b).(a^2-ab+b^2)
Mà a+b chia hết cho 3 và a,b thuộc Z.
=> điều phải chúng minh
2.Cho biểu thức P=(a+b+c).(a.b+b.b+a.c)-2.a.b (với a;b;c thuộc Z).Chứng minh nếu a+b+c chia hết cho 4 thì P chia hết cho 4
3. Cho 3 số nguyên a;b;c thỏa mãn a^2+b^2=c^2.Chứng minh :
Câu a:a.b.c chia hết cho 3
Câu b:a.b.c chia hết cho 12
4.Cho p là số nguyên tố >7.Chứng minh 3^p-2^p-1 chia hết cho 42.p
5.Chứng minh với mọi STN thì n^3-n+2 không chia hết cho 6
Bài 5: Chứng minh rằng:
a, a thuộc Z thì a( a+1 )( a+2 ) chia 3
b, Nếu ( a-b ) chia hết cho 4 thì ( a - 7b ) chia hết cho 4
c, Nếu a chia hết cho 4; b thuộc Z thì ( -2a - 8b ) chia hết cho 8
d, Nếu a,b thuộc Z; ( a + 2b + 3c ) chia hết cho 5 thì ( a + 3b + 7c ) chia hết cho 5
chứng minh rằng với mọi a,b,c thuộc Z nếu a-11.b +3.c chia hết cho 17 thì 2.a-5.b+6.c chia hết cho 17
Chứng tỏ nếu a+b chia hết cho 6
thì a^3+b^3 chia hết cho 6 với a,b thuộc Z
Ta có: a3+b3=(a+b)(a2-ab+b2)
Mà a+b chia hết 6
=>a2-ab+b2 chia hết 6
=>a3+b3 chia hết 6
Tìm x,y thuộc Z biết
a) 4x-xy+2y+3
b) 3y-xy-2x-5=0
c) 2xy-x-y=100
bài 2 cho a,b thuộc z biết
ab-ac+bc-c^2=-1
chứng minh a và b là 2 số đối nhau
bài 3. cho a,b,c thuộc Z và a+c+c=6
chứng minh a^3+b^3+c^3 chia hết cho 6
bài 4 cho x,y thuộc Z chứng minh nếu 6x+11y chia 31 thì x+7y chia hết cho 31
bài 5 chứng minh với mọi n thuộc Z thì (n-1)(n+2)+12 ko chia hết cho 9
\(4x-xy+2y=3\)
\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)
\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự xét bảng
\(3y-xy-2x-5=0\)
\(\Rightarrow y\left(3-x\right)-2x=5\)
\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)
\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)
\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)
\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự xét
\(2xy-x-y=100\)
\(\Rightarrow x\left(2y-1\right)-y=100\)
\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)
\(\left(2x-1\right)\left(2y-1\right)=101\)
\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)
Tự xét bảng
P/s : bài 3 có gì sai ko ?
tìm số a thuộc Z
2a-7 chia hết cho a-1 (a khác 1)
3a+4chia hết cho a-3 (a khác 3)
bài 2: cho a,b,c thuộc Z. chứng minh nếu 3a+4b+5c chia hết 11 thì 9a+b+4c cũng chia hết 11
mk làm phụ mấy câu thôi
a)2a-7 chia hết cho a-1
2a-2-5 chia hết cho a-1
2(a-1)-5 chia hết cho a-1
=>5 chia hết cho a-1 hay a-1EƯ(5)={1;-1;5;-5}
=>aE{2;0;6;-4}
b)3a+4 chia hết cho a-3
3a-9+13 chia hết cho a-3
3(a-3)+13 chia hết cho a-3
=>13 chia hết cho a-3 hay a-3EƯ(13)={1;-1;13;-13}
=>aE{4;2;16;-10}
1) Cho 5a + 8b chia hết cho 3 . Chứng minh rằng với mọi a thuộc Z thì :
a) - a + 2b chia hết cho 3
b) 10a + b chia hết cho 3
c) 16b + a chia hết cho 3
2) Cho a ; b ; c thuộc Z biết ;
ab - ac + bc - cc = - 1 . Hãy chứng tỏ rằng a ; b là 2 số đối nhau
Bài 1:
a/ 5a + 8b = 6a - a + 6b + 2b = 6(a+b) + ( - a + 2b) chia hết cho 3 mà 6(a + b) chia hết cho 3 => - a + 2b chia hết cho 3
b/ 5a + 8b chia hết cho 3 => 2(5a + 8b) = 10a + 16b = 10a + b + 15b chia hết cho 3 mà 15b chia hết cho 3 => 10a + b chia hết cho 3
c/ 5a + 8b chia hết cho 3 => 2(5a + 8b) = 10a + 16b =9a + a + 16b chia hết cho 3 mà 9a chia hết cho 3 => 16b + a chia hết cho 3