tìm STN NHỎ NHẤT khi chia số đó cho 9 dư5, cho 7 dư 4 chia 5 dư 3
tìm một số tự nhiên nhỏ nhất chia hết cho 7 mà số đó chia cho 2 dư 3; chia cho 3 dư 2; chia cho 4 dư 3; chia cho 5 dư 4;chia cho 6 dư5
Gọi a là số cần tìm.
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia 2 dư 1 nên a + 1 chia hết cho 2
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2
=> a thuộc tập hợp các số : 59; 119; 179; 239
mà a chia hết cho 7 và nhỏ nhất => a = 119
K cho mình nha
tìm STN nhỏ nhất biết rằng khi chia số đó cho 3 dư 2 chia 4 dư 3 chia 5 dư 4 cho 10 dư 9
bạn đưa về dạng a+1 là bcnn của 3,4,5 và 10 sẽ ra a là 59 nhé
Gọi số tự nhiên cần tìm là a (Điều kiện:a \(\in\)N)
Theo bài ra ta có:
a : 3(dư 2)=> a + 1 \(⋮\)3
a : 4(dư 3)=> a + 1 \(⋮\)4
a : 5(dư 4)=> a + 1 \(⋮\)5
a : 10(dư 9)=>a + 1 \(⋮\)10
Vì a nhỏ nhất
Do đó a + 1\(\in\)BCNN(3;4;5;10)
Và 3 = 3
4 = 22
5 = 5
10 = 2 x 5
=> BCNN(3;4;5;10) = 3 x 22 x 5 = 60
=> a + 1 \(\in\)B(60)
=> a + 1 \(\in\){0;60;120;180;240;300;360;420;...}
Vì a : 3(dư 2)=> a > 2
=> a + 1 = 60
=> a = 60 - 1 = 59
Vậy số cần tìm là 59.
Học~Tốt
Tìm STN nhỏ nhất biết nếu đem số đó chia cho 5 thì dư 3, chia cho 7 dư 4, chia cho 9 dư 5
Bài 2 Tìm STN có 3 chữ số lớn nhấy ma khi chia số đó
cho 4 dư 3,chia 5 dư 4 ,chia 6 dư 5
b) Tìm STN nhỏ hơn 400 ma khi chia số đó cho 2,3,4,5,6 đều dư 1 và khi chia cho 7 thì không dư
Giúp mình giải bài toán này với:
Tìm số tự nhiên nhỏ nhất khi chia cho5 có số dư là 3,chia cho 7 có dư là 4,chia cho 5 dư5
Đề của bạn sai rồi bạn ơi, nếu khi chia nó cho 5 dư 5, thì phép tính đó từ dư thành chia hết rồi.
sua chia5 du 5 thanh chia 5 du 9
Tìm STN nhỏ nhất biết khi chia nó cho 5 dư 3, chia 7 dư 4, chia 9 dư 5(cos hướng dẫn cụ thể)
1, tìm 1 số tự nhiên nhỏ nhất khác 0 chia hết cho 4,5,6,7,9,10
2, tìm 1 stn nhỏ nhất khác 1 chia cho 6,7,8,9,10,11,12 đều dư 1
3, tim 1 stn nhỏ nhất chia 4 dư 2 , 6 dư 4 , 7 dư 5 ,8 dư 6 ,9 dư 7
4 , tìm stn nhỏ nhất chia 2,5,9 dư 1 và 7 dư 6
Tìm STN nhỏ nhất biết rằng khi chia số đó cho 3, cho 4, cho 5, cho 6, đều có số dư là 2 và chia cho 7 dư 3
Tìm số tự nhiên nhỏ nhất có 4 chữ số, sao cho khi số đó chia cho 5 dư 3, chia cho 7 dư 5 và chia cho 9 dư 7.
Lời giải:
Gọi số cần tìm là $a$. Theo bài ra ta có: $1000\leq a\leq 9999$
$a-3=(a+2)-5\vdots 5$
$a-5=(a+2)-7\vdots 7$
$a-7=(a+2)-9\vdots 9$
$\Rightarrow a+2\vdots 5,7,9$
$\Rightarrow a+2\vdots BCNN(5,7,9)$ hay $a+2\vdots 315$
$\Rightarrow a+2\in\left\{0; 315; 630; 945;1260;...\right\}$
$\Rightarrow a\in \left\{-2; 313; 628; 943; 1258;...\right\}$
Mà $1000\leq a\leq 9999$ và $a$ nhỏ nhất nên $a=1258$