biết x/2=y/4=z/3 và x-2y+z=6. Tìm x,y,z
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
Tìm x,y,z biết
a, x/2=y/3=z/4 và x+z=18
b, x/5=y/-6=z/7 và y-x=39
c, x/2=y/3=z/-4 và 3x-2y
d, x/0,3=y/0,7=z và z-3
e, x+1/2=y+2/3=z+3/4 và x+y+z=21
a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)
Áp dụng t/c dãy tỏ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)
tìm x,y và z biết :
a) x/5=y/3=z/6 và 3x-2y+2z = 24
b) x/2=y/3=z/4 và x+z=18
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{6}\Rightarrow\frac{3x}{15}=\frac{2y}{6}=\frac{2z}{12}\)
áp dụng tính chất dãy tỉ số bn ta có
\(\frac{3x}{15}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y+2z}{15-6+12}=\frac{24}{21}=\frac{8}{7}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{40}{7}\\y=\frac{24}{7}\\z=\frac{48}{7}\end{cases}}\)
đề bài câu a xem lại nhé
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4};x+z=18\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\)\(x=3.2=6\)
\(y=3.3=9\)
\(z=3.4=12\)
ADTC dãy t/s bằng nhau ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
tìm x, y, z biết
a) 3x =7y và x - y = -16
b) x/6 = y/5 và x + 2y = 20
c) x/2 = y/-3 = z/5 và 2x + 3y + 5z =6
d) x/2 =y/3 , y/4 = z/5 và x + y -z =10
e) x/3 = y/4 = z/2 và x^3 - y^3 + z^3
a: 3x=7y
=>x/7=y/3=(x-y)/(7-3)=-16/4=-4
=>x=-28; y=-12
b: x/6=y/5
=>x/6=2y/10=(x+2y)/(6+10)=20/16=5/4
=>x=30/4=15/2; y=25/4
c: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2\cdot2+3\cdot\left(-3\right)+5\cdot5}=\dfrac{6}{20}=\dfrac{3}{10}\)
=>x=3/5; y=-9/10; z=3/2
d: x/2=y/3
=>x/8=y/12
y/4=z/5
=>y/12=z/15
=>x/8=y/12=z/15
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
=>x=16; y=24; z=30
bài 1 : tìm x ; y biết 4x=7y và x^2+y^2=260
bài 2 tìm x;y;z biết
x/y/z=3:5:(-2)và 5x -y+3z=-16
bài 3 tìm x;y;z biết x:y:z =4/5/6 và x^2-2y^2+z^2=18
bài 2 :
ta có x:y:z=3:5:(-2)
=>x/3=y/5=z/-2
=>5x/15=y/5=3z/-6
áp dụng tc dãy ... ta có :
5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4
=>x/3=-=>x=-12
=>y/5=-4=>y=-20
=>z/-2=-4=>z=8
tìm x,y,z biết x-1/x=y-3/4=z-5/6 và 3x-2y+Z=4
a) Tìm 3 số x,y,z biết x:y:z=2:4:6 va 3x-y+z=24
b) Tim 3 số x,y,z biết x,y,z tỉ lệ nghịch 6,10,4 và x+2y-3z=115
a) Theo đề bài, ta có:
\(x:y:z=2:4:6\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)và \(3x-y+z=24\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{3x-y+z}{2.3-4+6}=\frac{24}{8}=3\)
\(.\frac{x}{2}=3\Rightarrow x=3.2=6\)
\(.\frac{y}{4}=3\Rightarrow y=3.4=12\)
\(.\frac{z}{6}=3\Rightarrow z=3.6=18\)
Vậy\(x,y,z\) lần lượt là: \(6,12,18\)
b) Vì x, y, z tỉ lệ nghịch với 6, 10, 4 nên ta có:
\(6x=10y=4z\Rightarrow\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{4}}\)
Theo tính chất của dãy tỉ số bằng nhua, ta có:
\(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{4}}=\frac{x+2y-3z}{\frac{1}{6}+2.\frac{1}{10}-3.\frac{1}{4}}=\frac{115}{\frac{-23}{60}}=-300\)
\(.\frac{x}{\frac{1}{6}}=-300\Rightarrow x=-300.\frac{1}{6}=-50\)
\(.\frac{y}{\frac{1}{10}}=-300\Rightarrow y=-300.\frac{1}{10}=-30\)
\(.\frac{z}{\frac{1}{4}}=-300\Rightarrow z=-300.\frac{1}{4}=-75\)
Vậy x, y, z lần lượt là: -50; -30; -75
Ta có:
EQ\F(x,6)=EQ\F(y,10)=EQ\F(z,4)
x+2y-3z=115
Áp dụng tính chất của dãy tỉ số bằng nhau
EQ\F(x,6)=EQ\F(y,10)=EQ\F(z,4)=EQ\F(x+2y-3z,6+20-12)=EQ\F(115,14)
EQ\F(x,6)=EQ\F(115,14)=>x=EQ\F(345,7)
EQ\F(y,10)=EQ\F(115,14)=>y=EQ\F(575,7)
EQ\F(z,4)=EQ\F(115,14)=>z=EQ\F(230,7)
Vậy x=EQ\F(345,7)
y=EQ\F(575,7)
z=EQ\F(230,7)
Tìm x,y,z,t biết:
a) 3x - 2y = 0 và x-y=16
b) x:y:z:t = 2:3:4:5 và x+y+z+t = -42
c) 4/x = 6/y và x+y=5}
d) x/3 = y/2 = z/5 và x-y+z = -10,2
Dựa vào tỉ số bằng nhau ta đc:
a)\(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{16}{-1}=-16\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-16\\\frac{y}{3}=-16\end{cases}\Rightarrow}\hept{\begin{cases}x=-32\\y=-48\end{cases}}\)
Các câu kia tg tự nha
c)
\(\frac{4}{x}=\frac{6}{y}=\frac{x}{6}=\frac{y}{4}\) và x + y = 5
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{6}=\frac{y}{4}\Rightarrow\frac{x+y}{6+4}=\frac{5}{10}=\frac{1}{2}\)
\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1.6}{2}=3\)
\(\frac{y}{4}=\frac{1}{2}\Rightarrow y=\frac{1.4}{2}=2\)
Vậy...
b, x : y : z : t = 2 : 3 : 4 : 5 => x/2 = y/3 = z/4 = t/5
Đặt : x/2 = y/3 = z/4 = t/5 = k => x = 2k ; y = 3k ; z = 4k ; t = 5k
x + y + z + t = -42 => 2k + 3k + 4k + 5k = -42 => 14k = -42 => k = -3
Với k = -3 => x = 2.(-3) = -6 ; y = 3.(-3) = -9 ; z = 4.(-3) = -12 ; t = 5.(-3) = -15
Vậy ...
d,Đặt : x/3 = y/2 = z/5 = k => x = 3k ; y = 2k ; z = 5k
x - y + z = -10,2 => 3k - 2k + 5k = -10,2 => 6k = -10,2 => k = -1,7
Với k = -1,7 => x = 3.(-1,7) = -5,1 ; y = 2 . (-1,7) = -3,4 ; z = 5.(-1,7) = -8,5
Vậy ....