Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nhunhugiahan
Xem chi tiết
sjfdksfdkjlsjlfkdjdkfsl
18 tháng 2 2020 lúc 23:39

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

Khách vãng lai đã xóa
Nguyễn lan anh
18 tháng 2 2020 lúc 23:53

bài này dễ sao không biết

Khách vãng lai đã xóa
nameless
19 tháng 2 2020 lúc 0:52

Bài 8 :
Tự vẽ hình nhé ?
a) Vì ∆ABC cân tại A (GT)
=> ∠ABC = ∠ACB (ĐN)
Mà ∠ABC + ∠DBC = 180o (2 góc kề bù)
      ∠ACB + ∠ECB = 180o (2 góc kề bù)
=> ∠DBC = ∠ECB (1)
Xét ∆BCD và ∆CBE có :
BD = CE (GT)
∠DBC = ∠ECB (Theo (1))
BC chung
=> ∆BCD = ∆CBE (c.g.c) (2)
=> ∠BCD = ∠CBE (2 góc tương ứng)
Hay ∠BCI = ∠CBI
Xét ∆IBC có : ∠BCI = ∠CBI (cmt)
=> ∆IBC cân tại I (định lý)
=> IB = IC (ĐN) (3)
Từ (2) => DC = EB (2 cạnh tương ứng)
Mà ID + IC = DC, IE + IB = EB
=> ID = IE
Xét ∆IDE có : ID = IE (cmt)
=> ∆IDE cân tại I (ĐN)
b) Ta có : AB + BD = AD
    Mà AC + CE = AE
          AB = AC (GT)
          BD = CE (GT)
=> AD = AE 
Xét ∆ADE có : AD = AE (cmt)
=> ∆ADE cân tại A (ĐN)
=> ∠ADE = \(\frac{180^o-\widehat{DAE}}{2}\)(4)
Vì ∆ABC cân tại A (GT)
=> ∠ABC = \(\frac{180^o-\widehat{BAC}}{2}\)(5)
Từ (4), (5) => ∠ADE = ∠ABC, mà 2 góc này ở vị trí đồng vị
=> BC // DE (DHNB)
c) Xét ∆ABM và ∆ACM có :
AM chung
AB = AC (GT)
MB = MC (do M là trung điểm của BC)
=> ∆ABM = ∆ACM (c.c.c)
=> ∠AMB = ∠AMC (2 góc tương ứng)
Mà ∠AMB + ∠AMC = 180o (2 góc kề bù)
=> ∠AMB = ∠AMC = 180o : 2 = 90o 
Sau đó chứng minh ∆BIM = ∆CIM theo c.c.c bằng 3 yếu tố MI chung, MB = MC, IB = IC (Theo (3))
Rồi => ∠IMB = ∠IMC (tương ứng)
Mà ∠IMB + ∠IMC = 180o (kề bù) 
=> ..... (làm như phần trên)
Ta có : ∠AMB + ∠IMB = ∠AMI
Mà ∠AMB = 90o (cmt)
      ∠IMB = 90o (cmt)
=> 90o + 90o = ∠AMI
=> ∠AMI = 180o
=> A, M, I thẳng hàng (đpcm)
Vậy .....

Khách vãng lai đã xóa
Võ Hùng Nam
Xem chi tiết
Nguyễn Ngọc Minh
1 tháng 8 2016 lúc 21:43

Võ Hùng Nam hảo hảo a~

Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 13:40

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)

Newbie
Xem chi tiết
duong minh nhat
Xem chi tiết
Nguyễn Đức Phúc Vượng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 22:09

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên DA=DE

hay D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

nên B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trực của AE

hay BD⊥AE

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: AF=EC

Nguyễn Minh ánh
Xem chi tiết
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Edana_chan
10 tháng 8 2022 lúc 9:40

loading...

Tuệ Minh Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 1 2022 lúc 13:26

a: Xét ΔABH và ΔDBH có 

BA=BD
BH chung

AH=DH

DO đó: ΔABH=ΔDBH

b: Xét ΔBAE và ΔBDE có 

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

DO đó:ΔBAE=ΔBDE

Suy ra: \(\widehat{BAE}=\widehat{BDE}=90^0\)

hay DE\(\perp\)BC

c: Xét ΔAEK vuông tại A và ΔDEC vuông tại D có 

EA=ED

\(\widehat{AEK}=\widehat{DEC}\)

Do đó: ΔAEK=ΔDEC

Suy ra: AK=DC

Xét ΔBKC có

BA/AK=BD/DC
Do đó: AD//KC

ahihi
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 3 2023 lúc 14:01

a: Xét ΔBAE  và ΔBHE có

BE chung

góc ABE=góc HBE

BA=BH

=>ΔBAE=ΔBHE

=>góc BHE=90 độ

=>HE vuông góc BC

b: BA=BH

EA=EH

=>BE là trung trực của AH

c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EK

góc AEK=góc HEC

=>ΔEAK=ΔEHC

d: AE=EH

mà EH<EC

nên AE<EC