Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Nhi
Xem chi tiết
Minh Hiếu
7 tháng 5 2022 lúc 21:46

\(y\times\left(0,99+0,01\right)=2021\)

\(y=2021\)

Vũ Quang Huy
7 tháng 5 2022 lúc 21:47

 y x 0,99 + y : 100 = 2021

 y x 0,99 + y x 0,01 = 2021

y x( 0,99+0,01) = 2021

y   x     0,1          = 2021

y   = 2021 : 0,1

y=202,1

 

`y xx (0,99+0,01) = 2021`

`y xx 1 = 2021`

`y = 2021`

Đỗ Thiện Thế Phi
Xem chi tiết
Member lỗi thời :>>...
23 tháng 10 2021 lúc 21:48

Ta có :

\(\left(\frac{x}{y}\right)^2=\frac{16}{9}\)\(\Rightarrow\frac{x^2}{y^2}=\frac{16}{9}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2}{4^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{16+9}=\frac{100}{25}=4=\left(\pm2\right)^2\)

\(\Rightarrow\hept{\begin{cases}x^2=\left(±2\right)^2.4^2\\y^2=\left(\pm2\right)^2.3^2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=\left(\pm2.4\right)^2\\y^2=\left(\pm2.3\right)^2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=\left(\pm8\right)^2\\y^2=\left(\pm6\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm8\\y=\pm6\end{cases}}\)

Mà x và y cùng dấu => ( x , y ) ∈ { ( -8 ; -6 ) ; ( 8 ; 6 ) }

Khách vãng lai đã xóa
hồ nhật anh
Xem chi tiết
Hoàng Phương Minh
Xem chi tiết
titanic
16 tháng 9 2018 lúc 10:13

Ta có \(\left(\frac{x}{y}\right)^2=\frac{16}{9}=\left(\pm\frac{4}{3}\right)^2\)

\(\frac{x}{y}\)dương nên \(\frac{x}{y}=\frac{4}{3}\Rightarrow x=\frac{4y}{3}\)

Thay \(x=\frac{4y}{3}\)vào \(x^2+y^2=100\)ta được

\(\left(\frac{4y}{3}\right)^2+y^2=100\)

\(\frac{16}{9}.y^2+y^2=100\)

\(y^2.\left(\frac{16}{9}+1\right)=100\)

\(y^2.\frac{25}{9}=100\)

\(y^2=100:\frac{25}{9}=36\)

\(y=6\)( vì y dương  )

Linh Khanh
Xem chi tiết
ngô nguyễn phương anh
Xem chi tiết
Nguyễn Huy Tú
31 tháng 7 2021 lúc 7:54

a, Ta có : \(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{4}=\frac{-3x+5y}{-9+20}=\frac{33}{11}=3\Rightarrow x=9;y=12\)

b, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{81+256}=\frac{100}{337}\)

\(x=\frac{30\sqrt{337}}{337};y=\frac{40\sqrt{337}}{337}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
31 tháng 7 2021 lúc 7:55

sửa phần b nhé 

b, Áp dụng tính châ dãy tỉ số bằng nhau  

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\Rightarrow x=6;y=8\)

Khách vãng lai đã xóa
Phùng Phương Linh
20 tháng 10 2021 lúc 19:22

ko bt nha bn

Khách vãng lai đã xóa
bin nguyễn
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
Phan van anh
Xem chi tiết
Edogawa Conan
1 tháng 10 2019 lúc 14:45

1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

                  \(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)

Vậy ....

2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

           \(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)

vậy ...

Edogawa Conan
1 tháng 10 2019 lúc 14:49

3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

       \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)

         \(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)

Vậy ...