Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen lan anh
Xem chi tiết
uuttqquuậậyy
4 tháng 11 2015 lúc 16:40

Cau hoi tuong tu nhe 

Ban chi can doi so 5 thanh so 3 roi lam 

Tick nha

lukaku bình dương
Xem chi tiết

a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2

Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)

b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3

Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)

 

c, Hai số tự nhiên liên tiếp là k và k+1

Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2

Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2

(ĐPCM)

d, Ba số tự nhiên liên tiếp là m;m+1 và m+2

Tích chúng: m(m+1)(m+2) 

+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3

+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3

+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3

=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)

 

Nguyễn Lê Phước Thịnh
2 tháng 8 2023 lúc 9:51

a: Gọi ba số liên tiếp là a;a+1;a+2

a+a+1+a+2=3a+3=3(a+1) chia hết cho 3

b: Gọi 4 số liên tiếp là a;a+1;a+2;a+3

a+a+1+a+2+a+3

=4a+6

=4a+4+2

=4(a+1)+2 ko chia hết cho 4

c: Hai số liên tiếp thì luôn có 1 số chẵn, 1 số lẻ

=>Hai số liên tiếp khi nhân với nhau sẽ chia hết cho 2

d: Ba số liên tiếp thì chắc chắn sẽ có 1 số chia hết cho 3

=>Ba số liên tiếp khi nhân với nhau sẽ chia hết cho 3

Hoàng Đức Minh
Xem chi tiết
Hiền Thương
2 tháng 7 2021 lúc 19:50

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương 

Khách vãng lai đã xóa
Phan Bảo Huân
Xem chi tiết
Nguyễn Thị Hoa
26 tháng 10 2021 lúc 21:49

chịu r

Khách vãng lai đã xóa
Nguyễn Hoàng Tú
Xem chi tiết
Dốt Bền Ngu Lâu
25 tháng 2 2018 lúc 20:35

Óc Chó Là Có Thật

๖Fly༉Donutღღ
25 tháng 2 2018 lúc 20:39

Gọi 5 số tự nhiên liên tiếp đó là n - 2 ; n - 1 ; n ; n + 1 ; n + 2 ( n thuộc N , n > 2 )

Ta có : \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5.\left(n^2+n\right)\)

Vì \(n^2\)không thể tận cùng là 3 hoặc 8 nên \(n^2+2\)không chia hết cho 5

\(\Rightarrow\)\(5.\left(n^2+2\right)\)không là số chính phương hay tổng các bình phương của 5 số tự nhiên liên tiếp không phải là 1 số chính phương ( đpcm )

Đức Lê
Xem chi tiết
Hoàng Thị Hương
31 tháng 12 2016 lúc 23:25

gọi 2 số tự nhiên liên tiếp đó là n và n+1

Tích hai số đó là n.(n+1)

Mà n.n<n.(n+1)<(n+).(n+1)

Hay n2<n.(n+1)<(n+1)2

=> n(n+1) không thể là số chính phương

Pham Van Tung
31 tháng 12 2016 lúc 20:43

Gọi 2 số tự nhiên liên tiếp là a và a+1(a thuoc N*)

    Ta có: a(a+1)=axa + a

                       =a2 + a

       => a^2 + a không phải là số chính phương. Hay a(á+1) không phải là số chính phương.(dpcm)

Đức Lê
31 tháng 12 2016 lúc 21:00

sai rồi

Trần thảo nguyên
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
Nguyễn Đình Dũng
1 tháng 7 2015 lúc 21:56

 Gọi 5 số tự nhiên liên tiếp là (a-2 ) (a-1) a (a+1) (a+2)
Ta có : A = (a-2)^2+(a-1)^2+a^2+(a+1)^2+(a+2)^2<br />
                     =a^2-4a+4+a^2-2a+1+a^2+a^2+2a+1+a^2+4a+4<br />
                     =5a^2+10
Ta có số chính phương luôn luôn có dạng 4k +1 hoặc 4k
Xét 2 TH ta luôn có:
TH1: a^2 = 4k
Ta có A= 20k + 10 = 4m + 2 (m thuộc N)  ko là số chính phương
TH2: a^2 = 4k + 1
Ta có: A= 20k + 15 = 4m + 3(m thuộc N)  ko là số chính phương
đpcm

Đinh Tuấn Việt
1 tháng 7 2015 lúc 22:05

Gọi 5 số tự nhiên liên tiếp là \(n-2;n-1;n;n+1;n+2\)

Đặt tổng bình phương của chúng là \(A=\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2\)

\(=5n^2+10=5.\left(n^2+2\right)\)

n2 có tận cùng là 3 hoặc 8 \(\Rightarrow\) n2 + 2 có tận cùng là 5 hoặc 0 \(\Rightarrow\) n2 + 2 chia hết cho 5.

\(\Rightarrow\) 5.(n2 + 2) chia hết cho 25 \(\Rightarrow\) A không phải số chính phương.

 

 

Đinh Thanh Tùng
5 tháng 12 2017 lúc 19:31

đinh tuấn việt sai

✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
Trần Thị Loan
16 tháng 7 2015 lúc 11:17

Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2

Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 =  (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n+ 2)

 Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25 

vì n2 + 2 không chia hết cho 5 (do n2 có thể  tận cùng là 0;1;4;5;6;9 )

=> 5.(n+ 2) không là số chính phương => đpcm

Hồ Ngọc Minh Châu Võ
16 tháng 7 2015 lúc 11:08

Gọi 5 số tự nhiên liên tiếp là (a-2 ) (a-1) a (a+1) (a+2)
Ta có : 
Ta có số chính phương luôn luôn có dạng 4k +1 hoặc 4k
Xét 2 TH ta luôn có:
TH1: 
Ta có A= 20k + 10 = 4m + 2 (m thuộc N)  ko là số chính phương
TH2: 
Ta có: A= 20k + 15 = 4m + 3(m thuộc N)  ko là số chính phương