Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Coin Hunter
Xem chi tiết

a.

\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)

Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)

\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)

Hay \(2^{2024}\) chia 7 dư 4

b.

\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)

Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)

\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)

Hay \(5^{70}+7^{50}\) chia 12 dư 2

c.

\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)

Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)

\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)

Hay \(3^{2005}+4^{2005}\) chia 11 dư 2

d.

\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)

Hay \(1044^{205}\) chia 7 dư 1

e.

\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)

Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)

\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)

hay \(3^{2003}\) chia 13 dư 9

Lê Nguyễn Khánh Hưng
Xem chi tiết
nguyen thu phuong
19 tháng 10 2017 lúc 19:51

1.Gọi số tự nhiên cần tìm là A

Chia cho số 29 dư 5 nghĩa là: A = 29p + 5 (p thuộc N)

Tương tự: Chia cho số 31 dư 28 nghĩa là: 31q + 28 (q thuộc N)

Nên 29p + 5 = 31q + 28 => 29 (p - q) = 2q + 23

Ta thấy : 2q + 23 là số lẻ => 29 (p - q) cũng là số lẻ => p - q = 1

Theo giả thiết A nhỏ nhất nên => q nhỏ nhất (A = 31q + 28)

                                                   => 2q = 29(p - q) - 23 nhỏ nhất

                                                   => p- q nhỏ nhất

Do đó p - q = 1 => 2q = 29 -23 = 6

                            => q = 3

Vậy số cần tìm A là : 31q + 28 = 31 x 3 + 28 = 121

2. Số đó phải lớn hơn 10. Ta có:

129 : x = b =>x.b + 10 = 129 (b là thương) => x = (129 - 10) : b = 129 : b

61 : x = c dư 10 => x.c + 10 = 61 (c là thương) => x = 51 : c

x = 119 : b = 51 : c

119 chỉ chia hết cho 7 và 17 (ngoài 1 và 119) : 119 : 17 = 7

51 chỉ chia hết cho 3 và 17 (ngoài 1 và 51) : 51 : 3 = 17

Mà số đó lớn hơn 10 nên x = 17

Vậy x = 17

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 9 2018 lúc 17:05

Đáp án cần chọn là: A

Vì a chia cho 8 dư 6⇒(a+2)⋮8

a chia cho 12 dư 10 ⇒(a+2)⋮12

Do đó (a+2)∈BC(12;8) mà BCNN(12,8)=24.

Do đó (a+2)⋮24⇒a chia cho 24 dư 22

to lan phuong
Xem chi tiết
Công chúa bong bóng
Xem chi tiết
Lưu Esther
Xem chi tiết
Trần Nhật Anh
Xem chi tiết
trần ngọc diệp
21 tháng 11 2020 lúc 23:35

1) Chia cho 8 dư 6 là 190;chia 12 dư 10 là 286;chia 15 dư 13 là 358 .                                                                                                  2)Số tự nhiên nhỏ nhất khi chia cho 3;4;5 có số dư theo thứ tự 1;3;1 là 4;7;6.                                                                                      Mình ko chắc đâu nha!!!

Khách vãng lai đã xóa
kuroba kaito
22 tháng 11 2020 lúc 6:40

câu 1 sai đề đúng ko bạn

phải là cái này mới đúng :1)tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6;chia 12 dư 10;chia 15 dư 16 và chia hết cho 23

Khách vãng lai đã xóa
Lê Nguyễn Hoàng Mỹ Đình
Xem chi tiết
nấm lùn
Xem chi tiết
Ngô Dương Uyên Nhi
Xem chi tiết
ST
5 tháng 1 2018 lúc 18:03

Gọi a là số tự nhiên cần tìm

Ta có: a chia 3 dư 2 => a+1 chia hết cho 3

a chia 7 dư 6 => a+1 chia hết cho 7

a chia 10 dư 9 => a+1 chia hết cho 10

=> a+1 thuộc BC(3,7,10)

Để a nhỏ nhất thì a+1 là BCNN(3,7,10)

3=3,7=7,10=2.5

BCNN(3,7,10)=2.3.5.7=210

=>a+1=210 => a=209