số nghiệm của phương trình:x^2+4x^2/(x+2)^2=12
cho phương trình:x^2-4x+m=0.tìm giá trị của m để phương trình có hai nghiệm x1,x2 thảo mãn x1^2+x2^2=12'
Cho,phương,trình:x^2-4x+m-1=0
Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn điều kiện x1^2+x2^2=30
Áp dụng hệ thức vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=m-1\end{matrix}\right.\)
Ta có:
\(x_1^2+x^2_2=30\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=30\)
\(\Leftrightarrow4^2-2\left(m-1\right)=30\)
\(\Leftrightarrow2m-2=-14\)
\(\Leftrightarrow m=-6\)
Cho,phương,trình:x^2-4x+m-1=0
Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn điều kiện x1^2+x2^2=30
Áp dụng hệ thức vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=m-1\end{matrix}\right.\)
Ta có:
\(x_1^2+x^2_2=30\)
\(\left(x_1+x_2\right)^2-2x_1.x_2=30\)
\(4^2-2\left(m-1\right)=30\)
\(2m-2=-14\)
\(m=-6\)
Để phương trình đã cho có hai nghiệm \(x_1,x_2\) thì
\(\Delta'>0\Leftrightarrow2^2-\left(m-1\right)=5-m>0\Leftrightarrow m< 5\)
Khi \(m< 5\) phương trình đã cho có hai nghiệm \(x_1,x_2\).
Theo định lí Viete ta có:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)
Ta có:
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(m-1\right)=18-2m=30\)
\(\Leftrightarrow m=-6\) (thỏa mãn)
giải phương trình:x^4+2x^3+5x^2+4x-12 = 0
Tìm nghiệm nguyên dương của phương trình:x2(y+3)=y(x2-3)2
Tìm nghiệm nguyên dương của phương trình:x3-y3=95(x2+y2)
bạn ơi ở đây toàn mấy người lp 8 trở xuống ko ak bạn nên vô trang loigiaihay để giải đáp tốt hơn nhé
tìm các nghiệm nguyên của phương trình:x^2-2x-11=y^2
số nghiệm của phương trình \(x^2+\frac{4x^2}{\left(x+2\right)^2}=12\)
Nói thật chứ mình ghét phải gõ Công thức toán trên olm. Ức cmn chế
\(--------------\)
\(ĐKXĐ:\)\(x\ne-2\)
\(pt\) \(\Leftrightarrow\) \(x^2-\frac{4x^2}{x+2}+\frac{4x^2}{\left(x+2\right)^2}=12-\frac{4x^2}{x+2}\)
\(\Leftrightarrow\) \(\left(x-\frac{2x}{x+2}\right)^2=12-\frac{4x^2}{x+2}\)
\(\Leftrightarrow\) \(\left(\frac{x^2}{x+2}\right)^2+\frac{4x^2}{x+2}-12=0\)
Đặt \(t=\frac{x^2}{x+2}\Rightarrow t\ne0\) ta suy ra được \(t\) là nghiệm của phương trình:
\(t^2+4t-12=0\)
(*Lưu ý: bạn dùng delta hay biến đổi gì thì tùy)
Kết luận: \(S=\left\{1+\sqrt{5};1-\sqrt{5}\right\}\)
tìm nghiệm nguyên dương của phương trình:x2-y2=6y+44