cho A=1/101+1/102+1/103+...+1/200 Chứng minh rằng A > 5/8
cho A=1/101+1/102+1/103+...+1/200
Chứng minh rằng:
a)A>7/12
b)A>5/8
Cho C=\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\) Chứng minh rằng C > 5/8
Ta có: \(C=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+\dfrac{1}{122}+\dfrac{1}{123}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+\dfrac{1}{182}+\dfrac{1}{183}+...+\dfrac{1}{200}\right)\)
\(\Leftrightarrow C>20\cdot\dfrac{1}{120}+30\cdot\dfrac{1}{150}+30\cdot\dfrac{1}{180}+20\cdot\dfrac{1}{200}\)
\(\Leftrightarrow C>\dfrac{1}{6}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{10}=\dfrac{19}{30}=\dfrac{76}{120}\)
\(\Leftrightarrow C>\dfrac{75}{120}=\dfrac{5}{8}\)
hay \(C>\dfrac{5}{8}\)(đpcm)
cho A= 1/101 + 1/102+ 1/103+ ...+1/200
chứng mnh rằng A>7/12, A>5/8
Cho C=1/101+1/102+1/103+...+1/200
Chứng minh rằng C>5/8
Ta có:
\(c=\)\(\frac{1}{101}\)\(+\)\(\frac{1}{102}\)\(+\)\(\frac{1}{103}\)\(+\)...\(+\)\(\frac{1}{200}\)
\(c=\)(\(\frac{1}{101}\)\(+\)\(\frac{1}{102}\)\(+\)...\(+\)\(\frac{1}{120}\))\(+\)(\(\frac{1}{121}\)\(+\)\(\frac{1}{122}\)\(+\)...\(+\)\(\frac{1}{150}\))\(+\)(\(\frac{1}{151}\)\(+\)\(\frac{1}{152}\)\(+\)...\(+\)\(\frac{1}{180}\))\(+\)(\(\frac{1}{181}\)\(+\)\(\frac{1}{182}\)\(+\)...\(+\)\(\frac{1}{200}\))>20\(.\)\(\frac{1}{120}\)\(+\)30\(.\)\(\frac{1}{150}\)\(+\)30\(.\)\(\frac{1}{180}\)\(+\)20\(.\)\(\frac{1}{200}\)= \(\frac{1}{6}+\frac{1}{5}\)\(+\)\(\frac{2}{6}+\frac{1}{10}\)= \(\frac{19}{30}\)=\(\frac{76}{120}\)> \(\frac{75}{120}\)=\(\frac{5}{8}\)
=>\(c\)>\(\frac{5}{8}\)(đpcm)
_Hok tốt_
Cho A = 1/101+1/102+1/103+...+1/200
Chứng minh rằng A>7/12
Chứng minh: A > 7/12 và A > 5/8 với A = 1/101 + 1/102 + 1/103 + ... + 1/200
Chứng minh rằng :
a) 7/12 <1/101+1/102+1/103+...+1/200 <1
b) 1/101+1/102+1/103+...+1/150>1/3
a ) Số lượng số của dãy số trên là :
\(\left(200-101\right):1+1=100\) ( số )
Do \(100⋮2\)nên ta nhóm dãy số trên thành 2 nhóm như sau :
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150};\frac{1}{150}=\frac{1}{150}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\left(1\right)\)
\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200};\frac{1}{200}=\frac{1}{200}\)
\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{2}\left(3\right)\)
\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{199}< \frac{1}{100};\frac{1}{200}< \frac{1}{100}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}.100=1\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrowđpcm\)
b ) Số lượng số dãy số trên là :
\(\left(150-101\right):1+1=50\)( số )
Ta có : \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};\frac{1}{103}>\frac{1}{150};...;\frac{1}{150}=\frac{1}{150}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)
\(\Rightarrowđpcm\)
chứng minh rằng:
a) A= 1/5 + 1/45 + 1/117 + 1/221 + 1/357 + 1/525 < 1/4
b) B= 1/101 + 1/102 + 1/103 +...+ 1/200 < 5/8
a) \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+\frac{1}{357}+\frac{1}{525}\)
\(\Rightarrow A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}\)
\(\Rightarrow4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{21.25}\)
\(4A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{21}-\frac{1}{25}\)
\(4A=\frac{1}{1}-\frac{1}{25}=\frac{24}{25}\)
\(\Rightarrow A=\frac{24}{25}\div4=\frac{6}{25}
Chứng minh rằng \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
A>\(\dfrac{5}{8}\)
\(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+....+\dfrac{1}{200}\)
\(A=\sum\limits^{200}_{x=101}\left(\dfrac{1}{x+1}\right)=0,6857275648\)
Có: \(\dfrac{5}{8}=0.625\)
mà \(0,685...>0,625\)
\(\Rightarrow A>\dfrac{5}{8}\)
p/s: đây chỉ là 1 cách thoy, có cần lm cách khác k?
Lời Giải
Hay sử lý các con số khi không cần máy tính
\(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}\)
dãy A có 100 số hạng \(⋮4=25\)
\(A=\left(\dfrac{1}{101}+...+\dfrac{1}{104}\right)+\left(\dfrac{1}{105}+..+\dfrac{1}{108}\right)+..+\left(\dfrac{1}{197}+\dfrac{1}{200}\right)\) Bao gồm (..)
\(A>B=\left(\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\right)\)
dãy A có 25 số hạng \(⋮5=5\)
\(B=\left(\dfrac{1}{26}+...+\dfrac{1}{30}\right)+..+\left(\dfrac{1}{46}+..+\dfrac{1}{50}\right)\)
\(B>C=\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\)
\(\left\{{}\begin{matrix}\dfrac{1}{6}+\dfrac{1}{10}=\dfrac{16}{60}>\dfrac{16}{64}>\dfrac{2}{8}\\\dfrac{1}{7}+\dfrac{1}{9}=\dfrac{16}{63}>\dfrac{16}{64}>\dfrac{2}{8}\end{matrix}\right.\) \(\Rightarrow C>\dfrac{2}{8}+\dfrac{1}{8}+\dfrac{2}{8}=\dfrac{5}{8}\)
\(A>B>C>\dfrac{5}{8}\Rightarrow A>\dfrac{5}{8}\Rightarrow dpcm\Leftrightarrow dccm\)