Tồn tại hay không số nguyên n thỏa mãn :
n3 + 2015n = 20172017+1
mong mọi người giúp mik Thanks
Chứng minh rằng không tồn tại hai số nguyên a, b thỏa mãn: a3 = b3 + 2013.
Mọi người giải giúp mình với nha! thanks you mọi người.
Bài 8. Cho số nguyên dương n. Tồn tại hay không số nguyên dương d thỏa mãn: d là ước của 3n^2 và n^2 +d là số chính phương. Bài 9. Chứng minh rằng không tồn tại hai số nguyên dương x, y thỏa mãn x^2 +y+1 và y^2 +4x+3 đều là số chính phương.
Ai đó giúp mình đi mòaa🤤🤤🤤
Có tồn tại hay không số nguyên n thỏa mãn:
n3+2016.n = 20082007+4
làm bằng phản chứng + quy nạp thử xem
giả sử tồn tại điều trên ( phản chứng)
giả sử bất đẳng thức trên đúng vs n = k.=>k^3+2016k = 2008^2007+4
vậy ta thử với n bằng k+1. từ đó làm để đưa dần về là ta CM xong
Có tồn tại hay không số nguyên dương \(n\) thỏa mãn điều kiện \(4^n+210\) là tích của không ít hơn hai số nguyên dương liên tiếp?
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em với ạ!
Em cám ơn nhiều ạ!
Tồn tại hay không các số nguyên a, b, c thỏa mãn đồng thời các điều kiện sau:
a+abc=-357; b+abc=-573; c+abc=-753
Trình bày cách giải cụ thể hộ mình nha thanks
Ta có: a + abc = -357 <=> a.(bc + 1) = -357
b + abc = -573 <=> b.(ac + 1) = -573
c + abc = -753 <=> c.(ab + 1) = -753
=> a,b,c lẻ => abc lẻ => a + abc chẵn
mà -357 là số lẻ => không tồn tại a,b,c
cmr với mọi số nguyên tố p lớn hơn 2 đều không tồn tại số dương m,n thỏa mãn 1/p=1/m^2 +1/n^2
Có tồn tại hay không các số nguyên x, y thỏa mãn phương trình:
14x2 − 22xy + 17y2 = 2022
ai giúp mik bài này với,mik cám ơn nhiều:có tồn tại hay không các số tự nhiên a,b,c thỏa mãn đồng thời các đẳng thức sau:abc+a=999,abc+b=99,abc+c=9
Ta có: abc = 999-a = 99-b = 9-c
Từ đó, suy ra:
999-a = 99-b = 9-c
Liệu điều này có thỏa mãn không, thưa là không vì 9-c>0 thì c<9
Vậy 99-b>0 thì b<99 và c<999
ta có abc=999-a=99-b=9-c
=>999-a=99-b=9-c
điều này có thõa này có thõa mãn không,khôngvì 9-c>0 thì c<9
vậy 99-b>0 thì b<99 và c<999
tồn tại hay không hai số nguyên dương a và b thỏa mãn a^3+b^3=2013
Ta có: (a+b)3=a3+b3+3ab.(a+b)=2013+3ab.(a+b) chia hết cho 3
Do đó: (a+b)3 chi hết cho 3
=> (a + b) chia hết cho 3
=> (a+b)3 chia hết cho 27.
Ta có: 3ab.(a+b) chia hết cho 9
2013 = (a+b)3−3ab.(a+b) chia hết cho 9: vô lý vì 2013 chia 9 dư 6
Vậy không tồn tại hay hai số nguyên dương a và b thỏa mãn đề bài