so sanh 2016^2017 va 2017^2016
giup to voi!!!
so sanh
A=2016/2017+2017/2018 va B=2016+2017/2017+2018
So sánh \(A=\dfrac{2016}{2017}+\dfrac{2017}{2018}\) và \(B=\dfrac{2016+2017}{2017+2018}\)
Có 2 cách:
C1 :Rảnh thì bấm máy tính luôn rồi so sánh (nhưng cách này tỉ lệ sai khá cao nếu bất cẩn ghi nhầm số):
\(A=\dfrac{2016}{2017}+\dfrac{2017}{2018}\) \(=1,999008674\approx2\)
\(B=\dfrac{2016+2017}{2017+2018}\) \(=0,9995043371\approx1\)
Do 2 > 1 nên :
\(\Rightarrow A>B\).
C2:
Ta có:
\(\dfrac{2016}{2017}>\dfrac{2016}{2018}\Rightarrow A>\dfrac{2016}{2018}+\dfrac{2017}{2018}\Rightarrow A>\dfrac{2016+2017}{2017}\)
\(B=\dfrac{2016+2017}{2017+2018}=\dfrac{2016+2017}{4035}\)
Vì \(\dfrac{2016+2017}{2018}>\dfrac{2016+2017}{4035}\)
\(\Rightarrow A>B\).
_ Học tốt :))_
Tinh A= 2014/2015+2015/2016+2016/2017+2017/2014 hay so sanh A voi 4
=(2014/2014)+(2015+2015)+(2016/2016)+(2017+2017)
=1+1+1+1
=4
vậy A=4 (4=4)
So sanh 2016 /2017+2017/2018 voi 1
Có \(\frac{2016}{2017}=1-\frac{1}{2017}\Rightarrow\frac{2016}{2017}+\frac{1}{2017}=1\)1
\(\frac{2017}{2018}=1-\frac{1}{2018}\)
mà 1 = 1 và 2017 < 2018 nên \(\frac{1}{2017}>\frac{1}{2018}\)
suy ra \(\frac{2016}{2017}< \frac{2017}{2018}\)mặc khác \(\frac{2016}{2017}>\frac{1}{2017}\)nên\(\frac{2017}{2018}>\frac{1}{2017}\)do đó \(\frac{2016}{2017}+\frac{2017}{2018}>1\)
a. So sanh 2 phan so:A= 2015/2016+2016/2017+2017/2018 va B = 2015+2016+2017/2016+2017+2018
b.1/2.4+1/4.6+........+1/(2x-2).2x = 1/8
c.Cho A = 1/4+1/9+1/16+...+1/81+1/100 . Chung minh rang : A > 65/132
d.Cho B = 12/(2 . 4 ) ^ 2 + 20/ (4 . 6) ^2 + ...........+ 388/ ( 96 . 98 ) ^ 2 + 396/ ( 98 . 100 ) ^2 .Hay so sanh B voi 1 /4
So sanh A va B biet
A=2017^100/1+2017+2017^2+2017^3+.....+2017^100
B=2016^100/1+2016+2016^2+2016^3+.....+2016^100
so sanh A va B
A=2017^100 / 1+2017+2017^2+2017^3+...+2017^100
B=2016^100 / 1+2016+2016^2+2016^3+...+2016^100
so sanh AvaB A=2017^2016+1/2017^2017+1 va B=2x+1/x-3
So sanh :\(\frac{2017}{2018}+\frac{2018}{2019}va\frac{2015}{2016}+\frac{2016}{2017}\)
so sanh A va B
\(A=\frac{2017^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)
\(B=\frac{2016^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
Ta có: \(A=\frac{2017^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)
\(\Leftrightarrow A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{10}}\)
\(B=\frac{2016^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
\(\Leftrightarrow B=\frac{\left[\left(20.100+16\right)\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
Ta có hai tổng A và B mới để so sánh:
\(A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)
\(B=\frac{\left[\left(20.100\right)+16\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
Tới đây đơn giản rồi. Bạn làm tiếp đi nhé! Mẹ mình bắt tắt máy không cho làm nên đành dừng lại ở đây thôi! Thông cảm :V