Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh hệ thức: AB*2 +CH*2 = AC*2 + BH*2. Suy ra rằng nếu AB > AC thì BH> CH
cho tam giác ABC nhọn. Kẻ AH vuông góc BC tại H. Chứng minh rằng AB^2+CH^2=AC^2+BH^2. Giúp mình với ạ
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=CH^2+AH^2\)
hay \(CH^2=AC^2-AH^2\)
Ta có: \(AB^2+CH^2=AH^2+BH^2+AC^2-AH^2\)
nên \(AB^2+CH^2=AC^2+BH^2\)(đpcm)
Cho tam giác ABC vuông tại A, Kẻ đường cao AH ( H thuộc BC )
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA. Từ đó suy ra AB^2=BH.BC
b) Tính độ dài BH, AC biết CH =6,4 cm, AB = 6cm
Cho tam giác ABC vuông tại A ( AB<AH); đường cao AH lấy điểm M, sao cho BM= BA. Từ M kẻ MN vuông góc với AC (N thuộc AC). Chứng minh rằng:
a,Tam giác ANH cân.
b, BC + AH > AB+ AC.
c, \(2AC^2-BC^2=CH^2-BH^2\)
mình thít toán nhưng hong đồng ngĩa là mình giỏi toán
https://lazi.vn/edu/exercise/cho-tam-giac-abcab-ac-goc-a-90-do-bh-ac-chung-minh-ac2-ab2-bc2-3bh2-2ah2-ch2
cho tam giác ABC vuông tại a đường cao AH a) chứng minh tam giác ABC ~ tam giác HBA từ đó suy ra AB^2=BH .BC b) cho BH=4cm CH=9cm tính AH,AB c) gọi F điểm tùy ý trên AC, đường thẳng qua H vuông góc HF cắt cạnh AB tại E chứng minh AE . CH=AH . FC d) xác định vị trí của F trên AC để đoạn FE có độ dài ngắn nhất
Cho tam giác ABC có AB>AC,
AH vuông góc với BC tại H thuộc BC
a, Chứng minh AB^2-AC^2=BH^2-CH^2
b, Lấy M thuộc AH chứng minh rằng AB^2-AC^2=BM^2-CM^2
Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AC, CK vuông góc với AB ( H thuộc AC,K thuộc AB. 1) Chứng minh: BH =CK . 2) Trên tia đối CA lấy điểm E sao cho CE=CH . Kẻ KM vuông góc với BC tại M và EN vuông góc với BC tại N. Gọi I là giao điểm của KE với cạnh BC.Chứng minh EN = KM và I là trung điểm của KE
Cho tam giác ABC, kẻ AH vuông góc BC tại H,(H năm giữa B và C). Hãy tính các cạnh AB, AC và chứng minh tam giác ABC vuông tại A nếu biết:
1) AH= căn bậc 2 của 3cm, BH = 1cm , CH= 3cm
2) AH= 1cm, BH= 1cm, CH= 1cm