Tìm số tự nhiên n để hai phân số đều là các số tự nhiên:\(\frac{n+6}{15}\)và \(\frac{3n-2}{n+1}\)
a) Tìm n thuộc Z để các phân số sau có giá trị là số tự nhiên
A= \(\frac{3n+17}{n+2}\)
\(B=\frac{4n-17}{n-1}\)
\(C=\frac{3n-6}{n-1}\)
\(D=\frac{2n+19}{n-3}\)
b) Tìm n thuộc Z để phân số \(P=\frac{n+6}{n+1}\)có giá trị là số tự nhiên
\(\frac{15}{n},\frac{12}{n+2},\frac{6}{2n-5}\)
Tìm số tự nhiên n để cả 3 phân số trên đều là số nguyên
Cho phân số : \(\frac{1+2+3+...+20}{6+7+8+...+36}\)
Hãy xóa một số hạng ở mẫu của phân số trên để giá trị của phân số đó không không đổi
tìm n thuộc N để các phân số sau có giá trị là số tự nhiên: /(/frac{3n+5}{n+1}/)
a) n+2
b)7-1
/(/frac{3n+5}{n+1}/)
ghi cho ro rang 1 chut ko hiu de
Bài 1: Tìm số tự nhiên n đẻ phân số \(\frac{n-1}{n+2}\)là một số nguyên
Bài 2: Tìm số tự nhiên a để ba phân số \(\frac{21}{a}\) ; \(\frac{22}{a-1}\); \(\frac{24}{a+1}\) đều là các số tự nhiên
Bài 1:
ĐKXĐ:\(n\ne-2\)
Ta có:\(\frac{n-1}{n+2}=1-\frac{3}{n+2}\)
Để phân số đó nguyên thì \(n+2\inƯ\left(3\right)\)
=> \(n+2=\left\{-3;-1;1;3\right\}\)
=> \(n=\left\{-5;-3;-1;1\right\}\)
Mà \(n\in N\)=> n=1
Bài 2:
ĐKXĐ \(a\ne1;-1\)
Để \(\frac{21}{a}\in N\)
Thì \(a\inƯ\left(21\right)\)
=>a={1;3;7;21} (1)
Để \(\frac{22}{a-1}\in N\)thì \(a-1\inƯ\left(22\right)\)
=>a-1={1;2;11;22}
=>a={1;3;12;23} (2)
Để \(\frac{24}{a+1}\in N\)Thì \(a+1\inƯ\left(24\right)\)
=> a+1={1;2;4;6;12;24}
=>a={0;1;3;5;11;23} (3)
Kết hợp (1);(2);(3) và ĐKXĐ ta có a=3 thì cả 3 phân số trên là số tự nhiên
Để \(\frac{n-1}{n+2}\in Z\) thì n - 1 chia hết cho n + 2
<=> n + 2 - 3 chia hết cho n + 2
<=> 3 chia hết cho n + 2
<=> n + 2 thuộc Ư(3) = {1;3}
Ta có bảng :
n + 2 | 3 | 1 |
n | 1 | -1 (loại) |
Bài 1:Tìm các số tự nhiên m và n thỏa mãn:\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
Bài 2:Cho phân số A =\(\frac{6.n-1}{3.n+2}\)( n là số tự nhiên)
a)Tìm n để giá trị của A là số tự nhiên
b)Tìm n để A có giá trị nhỏ nhất
Các bạn giải ra hộ mính nhé!
Bài 1:
Ta có \(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\) =>\(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)
=>\(\frac{m-1}{2}=\frac{2}{n}\)
=> n(m-1) = 4
=> n và m-1 thuộc Ư(4)={1;2;4}
Ta có bảng sau:
m-1 | 1 | 2 | 4 |
n | 4 | 2 | 1 |
m | 2 | 3 | 5 |
Vậy (m;n)=(2;4),(3;2),(5;1)
Tìm các số tự nhiên n để phân số \(\frac{3n+2}{7n+1}\)là phân số tối giản.
Để phân số\(\frac{3n+2}{7n+1}\)là phân số tối giản thì ƯCLN (3n + 2; 7n + 1) = 1
Bg (11)
Gọi a là ƯCLN (3n + 2; 7n + 1) (a \(\inℕ^∗\))
=> 3n + 2 \(⋮\)a và 7n + 1 \(⋮\)a
=> 7(3n + 2) - 3(7n + 1) = 11 \(⋮\)a
=> a \(\in\)Ư (11)
Ư (11) = {1; 11)
Xét a = 11
=> 3n + 2 \(⋮\)11 và 7n + 1 \(⋮\)11
=> 7n + 1 - 2(3n + 2) = n - 3 \(⋮\)11
=> n = 11k + 3 (k \(\inℕ\))
Mà a phải = 1 nên n \(\ne\)11k + 3
=> n = 11k; n = 11k + 1; n = 11k + 2; n = 11k + 4; n = 11k + 5; n = 11k + 6; n = 11k + 7; n = 11k + 8; n = 11k + 9; n = 11k + 10.
Trong đời ai cũng sẽ có lúc sai...
Câu 1: Tìm các phân số tối giản nhỏ hơn 1 có tử và mẫu đều dương, biết rằng tích của tử và mẫu là 120.
Câu 2: Tìm số tự nhiên n nhỏ nhất để các phân số sau đều là phân số tối giản:
\(\frac{5}{n+8},\frac{6}{n+9},\frac{7}{n+10},...,\frac{17}{n+20}\)
Câu 3: Tìm ác phân số lớn hơn \(\frac{1}{5}\)và khác số tự nhiên biết rằng nếu lấy mẫu nhân với 1 số, lấy tử cộng với số đó thì giá trị phân số không thay đổi.
Helppppppp, bài nào cũng được ạ. Cảm ơn
Câu 1:
1/120;3/40;5/24;8/15
chỉ z thôi bạn
Có hay không số tự nhiên n để 2 phân số \(\frac{n+6}{15}\)và \(\frac{n+5}{15}\) đồng thời là các số tự nhiên ?
Giả sử tồn tại số tự nhiên n để 2 phân số đó là các số tự nhiên
=> hiệu của chúng là số tự nhiên
=> \(\frac{n+6}{15}-\frac{n+5}{15}\)là số tự nhiên
=> \(\frac{n+6-n-5}{15}\)là số tự nhiên
=> \(\frac{1}{15}\)là số tự nhiên (Vô lí)
Vậy...
Có hay khong số tự nhiên n để 2 phân số \(\frac{n+6}{15}và\frac{n+5}{18}\)đồng thời là số tự nhiên.