CMR: 1x3x5x........(2n-1) / (n+1)x(n+2)x......x 2n = 1 / 2^n (n thuộc N*)
Chứng minh rằng :
a) 1x3x5x....x39/21x22x23x....x40 = 1/2 mũ 20
b) 1x3x5x....x(2n-1)/(n+1)x(n+2)x....x2n = 1/2 mũ n (n e N* )
mk cần gấp lắm
a) Nhân cả tử và mẫu với 2.4.6...40 ta được :
\(\frac{1.3.5...39}{21.22.23...40}\)=\(\frac{\left(1.3.5...39\right)\left(2.4.6..40\right)}{\left(21.22.23...40\right)\left(2.4.6...40\right)}\)
= \(\frac{1.2.3...39.40}{21.22.23...40.\left(1.2.3...20\right).2^{20}}\)
=\(\frac{1}{2^{20}}\)
b) Nhân cả tử và mẫu với 2.4.6...2n rồi biến đổi như câu a.
vs x thuộc N, cmr
\(\left(\sqrt{n+1}-\sqrt{n}\right)^2=\sqrt{\left(2n+1\right)^2}-\sqrt{\left(2n+1\right)^2-1}\)
CMR: với \(y=\frac{x^n+\frac{1}{x^n}}{x^n-\frac{1}{x^n}}\)thì \(\frac{x^{2n}+\frac{1}{x^{2n}}}{x^{2n}-\frac{1}{x^{2n}}}=\frac{y^2+1}{2y}\)
CMR:
a,1 + 3 + 5 +......+ ( 2n - 1 ) = n2
b,1 x 4 + 2 x 7 + .............. + n x ( 3n + 1 )2 =n x ( n + 1 ) x ( 2n + 1 )
Cmr : x8n + x4n+ 1 chia hết cho x2n+x2+1 với n thuộc N
1, cmr Với mọi x thuộc N luôn có: A(x)=46^x+296.13^x chia hết cho 1947
2,cmr A=220^119^69+119^69^220+69^220^119 chia hết cho 102
B=1890^1930+1945^1975+1 chia hết cho 7
3,cmr:
a,12^2n+1+11^n+2 chia hết cho 133
b,7.5^2n+12.6^n chia hết cho19
c,2.7^n+1 chia hết cho 3
d,21^2n+1+17^2n+1+19 chia hết cho19
e,9^n-1 chia hết cho 4
Cmr : x8n + x4n+ 1 chia hết cho x2n+x2+1 với n thuộc N
cmr với mọi x thuộc N* các cặp số sau là các cặp số nguyên tố cùng nhau
n và n+1
2n và 2n+2
1. Tìm x;y nguyên tố biết : 59x + 46y=2004
2. CMR: \(\frac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}=\frac{1}{2^n}\) với n thuộc N*
a, 59x + 46y = 2004
Vì 2004 là số chẵn, 46y là số chẵn => 59x là số chẵn
=> x là số chẵn, mà x là số nguyên tố
=> x = 2
=> 2.59 + 46y = 2004
=> 46y = 2004 ‐ 118
=> 46y = 1886
=> y = 1886:46 => y = 41
Vậy x = 2; y = 41