Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Kiều Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 13:21

b: \(\sqrt{\dfrac{3}{2}}>\sqrt{\dfrac{2}{2}}=1\)

a: \(\left(2\sqrt{5}-3\sqrt{2}\right)^2=38-12\sqrt{10}=1+37-12\sqrt{10}\)

\(1^2=1\)

mà \(37-12\sqrt{10}< 0\)

nên \(2\sqrt{5}-3\sqrt{2}< 1\)

Khánh San
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 22:29

\(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2\)

\(\Rightarrow\sqrt{37}-\sqrt{15}>2\)

Nguyễn Lê Phước Thịnh
13 tháng 8 2021 lúc 22:32

Ta có: \(\sqrt{37}>\sqrt{36}\)

\(-\sqrt{15}>-\sqrt{16}\)

Do đó: \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=2\)

Mạc Dii Dii
Xem chi tiết
Nguyễn Minh Trường
28 tháng 8 2017 lúc 22:18

a)>

b)<

c)>

๖ۣۜN.๖ۣۜÝ
21 tháng 10 2018 lúc 12:53

da an :

a >

b <

c >

HK tot

vuongnhatbac
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2021 lúc 13:22

\(\left(\sqrt{7}-2\right)^2=11-4\sqrt{7}\)

\(\left(3-\sqrt{7}\right)^2=16-6\sqrt{7}=11-4\sqrt{7}+5-2\sqrt{7}\)

mà \(5-2\sqrt{7}< 0\)

nên \(\sqrt{7}-2< 3-\sqrt{7}\)

Mạc Dii Dii
Xem chi tiết
Quoc Nhan
Xem chi tiết
Hoshimiya Ichigo
6 tháng 10 2018 lúc 21:39

có sự nhầm lẫn gì đó thì phải hoặc ko

căn 31+ căn 17+ căn 3> 11

căn 31+ căn 7 +căn 3> 11

căn 31+ căn 17 +căn 3= căn 51 ko biến đổi được bỏ căn đi thì 51 >11

câu tiếp theo tương tự

Blue Moon
6 tháng 10 2018 lúc 21:43

Xét thấy: \(\hept{\begin{cases}31< 36\\7< 9\\3< 4\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{31}< \sqrt{36}=6\\\sqrt{7}< \sqrt{9}=3\\\sqrt{3}< \sqrt{4}=2\end{cases}}} \)

\(\Rightarrow\sqrt{31}+\sqrt{7}+\sqrt{3}< 6+3+2=11\)

Vậy: .......

Quoc Nhan
9 tháng 10 2018 lúc 20:15

căn 17 nha mn

Đặng Nguyễn Thu Quỳnh
Xem chi tiết
???????
24 tháng 7 2019 lúc 17:16

a)  Có \(x+1< x+2\)

\(\Rightarrow\sqrt{x+1}< \sqrt{x+2}\)

\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+2}}< 1\)

b)  Vì \(\sqrt{x+1}< \sqrt{x+2}\)

\(\Rightarrow\sqrt{x+1}.\sqrt{x+1}.\sqrt{x+2}< \sqrt{x+2}.\sqrt{x+1}.\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{x+1}^2.\sqrt{x+2}< \sqrt{x+2}^2.\sqrt{x+1}\)

\(\Rightarrow\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}< \frac{\sqrt{x+1}}{\sqrt{x+2}}\)

hay \(\frac{\sqrt{x+1}}{\sqrt{x+2}}>\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}\)

Minh An
Xem chi tiết
TFBOYS shuai tai
Xem chi tiết