Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Hà Phương
Xem chi tiết
Vũ Hà Phương
9 tháng 2 2020 lúc 13:47

Nhớ trả lời nhanh nha

Khách vãng lai đã xóa
Phạm Tiến Dũng
Xem chi tiết
Bành Thị Kem Trộn
Xem chi tiết
Lưu Minh Trí
Xem chi tiết
Nguyễn Nhật Anh
17 tháng 3 2019 lúc 5:59

Đặt d là ước nguyên tố của 2n - 1 và 9n + 4

=> 2n - 1 chia hết cho d ; 9n + 4 chia hết cho d

2n - 1 chia hết cho d => 9( 2n - 1 ) chia hết cho d => 18n - 9 chia hết cho d

9n + 4 chia hết cho d => 2( 9n + 4 ) chia hết cho d => 18n + 8 chia hết cho d

=>( 18n + 8 ) - ( 18n - 9 ) chia hết cho d

=>18n + 8 - 18n + 9 chia hết cho d

=>   17 chia hết cho d => d thuộc ước của 17 mà ước của 17 là 1;17

Trang
Xem chi tiết
Nguyễn Thị Dạ Lý
21 tháng 3 2021 lúc 9:45

1/n=3

Khách vãng lai đã xóa
Bùi Hồng Sang
Xem chi tiết
Diệu Anh
26 tháng 4 2020 lúc 18:39

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

Khách vãng lai đã xóa
Nguyễn Thị Thu Duyên
Xem chi tiết
Võ Thế Vượng
3 tháng 4 2023 lúc 9:06

loading...  Nhớ tick cho mình nha

 

 

 

Nguyễn Thị Hoa Lâm
Xem chi tiết
Quách Dương Hà Anh
11 tháng 7 2019 lúc 8:22

Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23

=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)

Ta có: 2n (n+2) chia hết cho 2

=> 2n (n+2) là số chẵn

Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản

=> 6 / n - 23 / 2n (n+2) là phân số tối giản

Vậy 12n+1 / 2 (n+2) là phân số tối giản

Quách Dương Hà Anh
Xem chi tiết
Quách Dương Hà Anh
11 tháng 7 2019 lúc 8:02

Mọi người ai trả lời giúp mình với ! @_@

Quách Dương Hà Anh
11 tháng 7 2019 lúc 8:21

Sau một hồi tìm hiểu thì mình đã có lời giải r, bạn nào chưa bt thì tham khảo nhé !

Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23

=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)

Ta có: 2n (n+2) chia hết cho 2

=> 2n (n+2) là số chẵn

Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản

=> 6 / n - 23 / 2n (n+2) là phân số tối giản

Vậy 12n+1 / 2 (n+2) là phân số tối giản

Lê Quang Phúc
11 tháng 7 2019 lúc 9:32

Quách Dương Hà Anh mình ch bt là bạn giải đúng hay sai nhưng nếu giải thích là số lẻ/ số chẵn là phân số tối giản thì sai nhé.

VD: 3/12 = 1/4.

Phải giải thích là 23 là số nguyên tố => 23 chỉ chia hết cho chính nó và 1.

Mà 23 và 1 là số lẻ, còn 2n(n+2) là số chẵn nên 23 không chia hết cho 2n(n+2) =>....