Tìm n thuộc N để \(\frac{2n+7}{5n+2}\) không tối giản
Tìm n thuộc Z để p/s 2n+7/5n+2 không tối giản
tìm n thuộc N trong khoảng từ 11 đến 44 để phân số 2n+7/5n+2 chưa tối giản
Tìm n thuộc Z để :
a) 2n+3/4n+1 là phân số tối giản
b) 3n+2/7n+1 là phân số tối giản
c) 2n+7/5n+3 là phân số tối giản
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
tìm n để 2n+7/5n+2 tối giản
tìm x thuộc N để các phân số sau tối giản.
a) \(\frac{2n+3}{4n+1}\)
b)\(\frac{3n+2}{7n+1}\)
c)\(\frac{2n+7}{5n+2}\)
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!
tìm n thuộc Z để p/s 2n+7/5n+2 không tối giản
Tìm n để phân số tối giản :
a)\(\frac{18n+7}{21n+7}\)
b) \(\frac{2n+7}{5n+2}\)
Cho \(A=\frac{2n+7}{5n+2}\left(n\in N\right)\)
Tìm n để A là ps tối giản
Giúp mk vs
Gọi d là ước chung nguyên tố của 2n + 7 và 5n + 2 thì:
Ta có : 2n + 7 và 5n + 2 đều chia hết cho d
=> 5(2n + 7) và 2(5n + 2) chia hết cho d
=> 10n + 35 và 10n + 4 chia hết cho d
=> (10n + 35) - (10n + 4) chia hết cho d => 31 chia hết cho d
=> d = 31
Để A tối giản thì d ko bằng 31
=> 2n + 7 ko chia hết cho 31
=> 2n + 7 - 31 ko chia hết cho 31
=> 2n - 28 ko chia hết cho 31
=> 2(n - 14) ko chia hết cho 31
=> n - 14 ko chia hết cho 31 ( vì 2 và 31 nguyên tố cùng nhau)
=> n - 14 ko bằng 31k
=> n ko bằng 31k + 14( k thuộc Z )
Vậy với n ko bằng 31k + 14 thì p/s A tối giản.
(BÀI NÀY TỚ HỌC RỒI NÊN CẬU YÊN TÂM)