tìm ước chung lớn nhất của
a) n và n+1
b) 3n+2 và n+1
B1
a) Tìm ước chung của n+1; 3n+2(n thuộc N)
b) Tìm ước chung của 2n+3 và 3n+4 (n thuộc N)
B2 Biết rằng 2 số 5n+6 và 8n+7 không phải là 2 số nguyên tố cùng nhau. tìm ước chung lớn nhất ( 5n+6; 8n+7) n thuộc N
Tìm ước chung lớn nhất của
a) n,n+1
b) 3n+2 và n+1
a) ƯCLN của hai số tự nhiên liên tiếp là 1
b) Gọi ƯCLN của 3n+2 và n+1 là d
Ta có:3n+2 chia hết cho d; n+1 chia hết cho d
Suy ra 3(n+1) chia hết cho d
Suy ra 3(n+1) - (3n+2) chia hết cho d
⇒3n+3 - 3n-2 chia hết cho d
⇒1 chia hết cho d
Vậy d=1
1.Tìm n thuộc N để 3n+2 và 2n+3 nguyên tố cùng nhau
2.Chứng minh:Ước chung lớn nhất của 5a+3b và 13a+8b=Ước chung lớn nhất(a,b)với mọi a,b thuộc N
Tìm Ước chung lớn nhất của n3+2n và n4+3n+1 với mọi n thuộc N
Câu hỏi của shushi kaka - Toán lớp 6 - Học toán với OnlineMath
Cho m và n là các số nguyên dương thỏa mãn (m,n)=1. Tìm ước chung lớn nhất của 4m+3n và 5m+2n
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
Biết rằng 3n+1 và 5n+4(n thuộc N) là 2 số không nguyên tố cùng nhau.Tìm ước chung lớn nhất của 3n+1 và 5n+4
Gọi d là ƯC của 3n+1 và 5n+4 => 3n+1 và 5n+4 cùng chia hết cho d
=> 5(3n+1)=15n+5 chia hết cho d và 3(5n+4)=15n+12 cũng chia hết cho d
=> (15n+12)-(15n+5)=7 cũng chia hết cho d => d thuộc {1;7}
=> d lớn nhất =7 nên ƯC của 3n+1 và 5n+4 là 7
Để A rút gọn được <=> 63 và 3n + 1 phải có ước chung Có 63 = 32.7 =>3n + 1 có ước là 3 hoặc 7 Vì 3n + 1 ⋮ / ⋮̸ 3 => 3n + 1 có ước là 7 => 3n + 1 = 7k (k ∈ ∈ N) => 3n = 7k - 1 => n = 7 k − 1 3 7k−13 => n = 6 k + k − 1 3 6k+k−13 => n = 2 k + k − 1 3 2k+k−13 Để n ∈ N ⇒ k − 1 3 ∈ N ⇒ k = 3 a + 1 ( a ∈ N ) n∈N⇒k−13∈N⇒k=3a+1(a∈N) ⇒ n = 7 ( 3 a + 1 ) − 1 3 = 21 a + 7 − 1 3 = 21 a + 6 3 = 21 a 3 + 6 3 = 7 a + 2 ⇒n=7(3a+1)−13=21a+7−13=21a+63=21a3+63=7a+2 Vậy n có dạng 7a+2 thì A rút gọn được b, Để A là số tự nhiên <=> 3n + 1 ∈ ∈ Ư(63)={1;3;7;9;21;63} Ta có bảng: 3n+1 1 3 7 9 21 63 n 0 2/3 2 8/3 20/3 62/3 Vậy n ∈ ∈ {0;2}
Gọi ƯCLN hai số đó là D
=> 3n+1 :D và 5n+4 :D
=> 5.(3n+1):D và 3.(5n+4):D
=> 15.n+12 - 15.n+5 :D
=> 7:D
=> D thuộc Ư<7>={1,7}
TÌM ƯỚC CHUNG LỚN NHẤT CỦA
A;21N+5 VÀ 14N +3
18N+2 VÀ 30N+3
C;24N+7 VÀ 18N+5
D;2N-1 VÀ 3N +1 (N THUỘC N*)
Cho m,n là các số nguyên dương thõa mãn(m,n)=1.Tìm ước chung lớn nhất của 4m+3n và 5m+2n
Giải các bài toán sau:
1. Ước nguyên tố lớn nhất của:
36893 + 94787772
2. Tìm số tự nhiên n nhỏ nhất, biết rằng:
Ước chung lớn nhất của (1885n + 5) và (23503n +9) =2011
3. Tìm số tự nhiên n lớn nhất sao cho 2013 : n, R=3 và 20122013 : n, R = 23
4. Cho A = \(\frac{28n^2+3n+2015}{2n-3}\) (n\(\in\)N). Tìm n nhỏ nhất để A chia hết 87