Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, tâm giác SAB đều và nằm trong mặt phẳng đáy. Tính khoảng cách từ điểm S đến mặt phẳng (ABC)
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách từ điểm S đến (ABC)?
A. a 3
B. 2 a 3
C. a 6
D. a 3 2
Đáp án A
Phương pháp: Hai mặt phẳng vuông góc, đường thẳng nằm trong mặt này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.
Cách giải:
Gọi H là trung điểm của AB ta có
Tam giác SAB đều cạnh 2a
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách từ điểm S đến (ABC)?
A. a 3
B. 2 a 3
C. a 6
D. a 3 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , A B C ^ = 30 ° , tam giác SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách h từ điểm C đến mặt phẳng (SAB).
A. h = 2 a 39 13
B. h = a 39 13
C. h = a 39 26
D. h = a 39 52
Đáp án B.
Gọi H là trung điểm của BC khi đó S H ⊥ B C do S B C ⊥ A B C ⇒ S H ⊥ A B C
Lại có: C B = 2 C H ⇒ d C ; S A B = 2 d H ; S A B
Dựng H E ⊥ A B H F ⊥ S E ⇒ d H = H F
Mặt khác H E = A C 2 = 1 2 B C . sin A B C ^ = a 4 ; S H = a 3 2
Do đó H F = S H . H E S H 2 + H E 2 = a 39 26 ⇒ d c = a 39 13
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1. Biết khoảng cách từ A đến mặt phẳng (SBC) là 6 4 , từ B đến mặt phẳng (SAC) là 15 10 từ C đến mặt phẳng (SAB) là 30 20 và hình chiếu vuông góc của S xuống đáy nằm trong tam giác ABC. Thể tích khối chóp S.ABC bằng
A. 1 36
B. 1 48
C. 1 12
D. 1 24
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, ABC = 30 ° . Mặt bên SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách từ C đến mặt phẳng (SAB).
A. 39 a 13 .
B. 39 a 3 .
C. 26 a 13 .
D. 39 a 26 .
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, ABC = 30 o . Mặt bên SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách từ C đến mặt phẳng (SAB).
A. 39 a 13
B. 39 a 3
C. 26 a 13
D. 39 a 26
Cho hình chóp S . A B C có đáy A B C là tam giác đều cạnh bằng 1. Biết khoảng cách từ A đến mặt phẳng S B C là 6 4 , từ B đến mặt phẳng S A C là 15 10 ; từ C đến mặt phẳng S A B là 30 20 và hình chiếu vuông góc của S xuống đáy nằm trong tam giác A B C . Thể tích khối chóp S . A B C bằng
A. 1 36
B. 1 48
C. 1 12
D. 1 24
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính thể tích khối chóp S.ABC
A. V = a 3
B. V = a 3 2
C. V = 3 a 3 2
D. V = 3 a 3
Đáp án A
Gọi H là trung điểm AB. Ta có 2 tam giác SAB và ABC đều và bằng nhau nên SH = CH = a 3 . Mà S Δ A B C = a 2 3 ⇒ V S . A B C = 1 3 a 2 3 . a 3 = a 3
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a khoảng cách từ điểm A đến mặt phẳng (SBC) là , khoảng cách giữa SA, BC là a 15 5 . Biết hình chiếu của S lên mặt phẳng (ABC) nằm trong tam giác ABC tính thể tích khối chóp S.ABC
A. a 3 4
B. a 3 8
C. a 3 3 4
D. a 3 3 8